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INTRODUCTION

YOUR VERSALOG SLIDE RULE

Early in 1950, a group of prominent professors and practicing engineers
were approached with the problem of designing a practical slide rule
for today’s problems. They were asked to examine every existing con-
cept of slide rule practice in the light of modern-day specialized nceds
and to develop a new slide rule that would be the ultimate in cfficiency
and practical usefulness.

This is the story of your new VERSALOG Slide Rule . . . designed
by engineers . . . for engineers. Not merely an instrument of mathe-
matics . . . the VERSALOG is designed around the problems of engincer-
ing. It provides both the practicing engineer and the student with a
far more efficient and helpful, up-to-date “tool” to match the high
tempo of present day engineering development

INSTRUCTION TEXT

In this discussion of the VERSALOG Slide Rule, the authors break
with conventional “instruction pamphlets.” The value of their approach
will be appreciated by students, teachers, and practicing engincers
who have experienced difficulty in the transition between the abstract
mathematical approach of contemporary slide rules and “instructions”

. . and the practical application of those mathematical principles to
every day engineering problems.

In addition to offering a very readable treatment of slide rule funda-
mentals, the designers of the VERSALOG make a long step forward
toward the complele use of the slide rule and all its scales by graphically
lllustrating the application of your VERSALOG to three separate
and distinet engineering fields. Each section presents a practical
and easy-to-comprehend guide to the use of the VERSALOG in these
specialized fields. By so doing, the authors and editors of this text,
eminently qualified authorities in the fields of Civil, Electrical, and
Mechanical Engineering, have solved one of the great problems of
glide rule technique and use.



CONSTRUCTION

While many things are sought for in a slide rule, one is foremost
above all others . . . unquestioned accuracy at all times, no matter
what the conditions. The owner and user of the VERSALOG Slide
Rule will be gratified to know that the ultimate in craftsmanship, care
and exaetness in manufacture has been followed to produce the very
finest, most accurate shide rule sold today.

To insure aceuracy, your VIERSALOGCG Slide Rule is constructed
from carefully selected and laminated bamboo. Bamboo is tough, and
was chosen because of its ability to resist contraction and expansion
under varying climatic conditions. Bamboo has natural oils, imper-
ceptible to the touch, constantly lubricating the bearing surfaces and
allowing a smoothness of action not found in any other wood or metal.
Years of use make it operate more easily. White celluloid faces are
used for casy reading and all seale graduations and figures are deeply
machine cut into the face to insure a lifetime of accurate calculations.

In your POST VERSALOG SLIDIK RULE, you have truly one of
the finest and most exact instruments this century’s ingenuity is able
to produce.

THE FREDERICK POST COMPANY

Our deepest gratitude is extended to Professor E. I. Fiesenheiser,
Professor R. A. Budenholzer, and Associate Professor B. A. Fisher
for their efforts throughout the designing and developing stages of
the VERSALOG rule, also for the writing and edification of this text
book of instructions,

It is a tribute to the engineering profession, and to the never ending
efforts of those men who are devoting their lives educating and training
the engineer of the future.

PREFACE

The professional engineer or the engineer in training is to be con-
gratulated for having purchased a slide rule. Among computing tools
there is no other which contributes more to speed and efficiency and to
reducing the labor of involved calculations. The Post Versalog Slide
Rule is among the finest of such computing instruments. Its design is
the result of much study and of many consultations with a panel of
engineering teachers who practice engineering and represent major
engineering fields. While this rule will be of use to other professional
people such as scientists, accountants and mathematicians, it was de-
signed primarily with the needs of the engineer in mind.

Every effort has been made to select a wide range of the most useful
scales and to arrange these logically and conveniently. An adequate
scale designation system with a consistent coloring scheme has been
provided for the trigonometric scales. These improvements, devised by
Professor B. A. Fisher, will be appreciated by users of the slide rule.
Four log log and four reciproeal log log scales have been provided in-
stead of the usual three of each, thus extending the range of numbers.
The convenient, symmetrical arrangement of these log log scales should
be regarded as a definite improvement.

An soon as the student engineer acquires the slide rule he should
devote time to study of the instrument. Such time and effort will be
rewarded by inereased efficiency and accuracy and fewer errors during
examinations. He should practice to develop mastery of all of the scales
and their most efficient uses. Not to do so is to handicap himself. Learning
to use only one or two scales is like owning an expensive new automobile
which one drives around only in low gear, either not realizing that there
are higher gears, or failing to let the mechanism shift into high for
smooth speedy operation.

This instruction manual has been written for study without the aid
of a teacher. However, a knowledge of basic elementary mathematies is
assumed. The student engineer will probably have this knowledge when
he acquires the slide rule. Although the manual contains many examples
of mathematical problems as well as engineering problems, no effort is
made to teach either mathematics or engineering in this book.

Ideas and thoughts of others will be found intermingled with those
of the author. Grateful acknowledgment is therefore made to the fol-
lowing: Mr. Walter G. Hollmann, Director of Research for the Frederick
Post Company; Mr. Herman Ritow, Consultant; other teachers and
writers; and to students in the classroom.

E. 1. FIESENHEISER
CHicago, ILLiNOIS
Feb. 1951
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Chapter 1

[T

DESCRIPTION, ADJUSTMENT, CARE AND
MANIPULATION OF THE SLIDE RULE

In the study of this chapter, the reader should have the slide rule
before him and should refer to Fig. 1 (a) and (b), in which the various
parts of the rule are indicated.

i «~CURSOR

General Description. The slide rule consists essentially of 3 parts:
the body, or fixed part; the slide, which slides in grooves in the body;
= % and the cursor, with the hairline in the center. Scales appear on both

THE VERSALOG SLIDE RULE
ooy

2o : the body and the slide, and on both sides of the rule. This means
3 : that either one or the other, or both sides, may be used in making a
calculation.

The body and slide are constructed of laminated bamboo with an
overlay of white plastic. This type of construction insures against warp-
age and provides unusual dimensional stability so that the rule will be
accurate and operate smoothly over a wide range of weather conditions.

.
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Figure 1 (a)
Figure 1 (b)

] “,; Adjustment. Your Versalog slide rule should eome to you in perfect
. adjustment. However, in case it is dropped or severely jarred, the pre-
cise adjustment may be lost. In any case it is advisable to check the
adjustment occasionally to make sure that the scale readings are as
accurate as the instrument will allow. In order to check and adjust the
slide rule the following procedure may be followed.

With the rule held so that the shorter body member is uppermost,
move the slide until the C and D scales coincide perfectly. The DF
SELE scale on the upper body member should now be in alignment with the
3 identical CF scale of the slide. If it is not, the upper body member must
S be moved to right or left. In order to adjust this member, loosen the
3 two screws in the metal end bars by about one-half turn and move the
upper body member until the DF scale coincides with the CF scale,
then tighten the screws.

The hairline should now be moved to coincide with the left index
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(the 1 mark) of the D scale. In this position the hairline should also
coincide with the symbol = of the DF scale. If it does not, the hairline
is not perpendicular to the slide rule scales. It must be adjusted so that

SLIDE

it eoincides with the ends of both D and DF scales. It may be adjusted,
1



2 ADJUSTMENT, CARE, MANIPULATION

if necessary, by loosening the four serews of the metal cursor frame which
surrounds the glass. The glass may then be moved until perfect align-
ment is obtained, and the screws carefully retightened.

The rule may now be turned over for examination of the hairline
adjustment on the reverse side. The hairline should be in perfect align-
ment with the left index of the D scale as well as with the 1/e mark of
the LL/3 upper scale. If it is not, this hairline must be moved. This is
done again by loosening the four screws of the metal cursor frame, mov-
ing the glass, and retightening the screws. When properly set, both
hairlines should align simultancously. In making this adjustment care
must be exercised not to disturb the position of the hairline previously
adjusted.

In case it is difficult to push the slide, the body parts may be gripping
it too tightly. To adjust for easy operation, loosen a screw at one end
only on the adjustable part of the body. This end may then be pulled
away from the slide. The screw may then be retightened and the opera-
tion repeated at the other end. By adjustment of one end at a time the
alignment of the scales is not affected. One of the properties of the
bamboo wood construetion is that the operation of the slide becomes
easier and smoother with age and usage.

Care of Your Versalog Slide Rule. It is important to keep the
slide rule as clean as possible. Keeping the hands clean and keeping the
rule in its case when not in use will help. To clean the scales a slightly
moist cloth may be used. To remove particles from under the glass of
the cursor, a narrow strip of paper may be cut and placed over the
seales. The cursor may then be run over the paper, pressing down on
the cursor at the same time. This will cause the dirt particles to adhere
to the strip of paper.

Manipulation. In setting the hairline the cursor is generally pushed
with one hand to the neighborhood of the desired setting. It may then
be set accurately by placing the thumbs of both hands against either
side of the cursor frame, pushing a little more with one thumb than the
other to set the hairline. )

In sctting the slide it may be moved to the neighborhood of the de-
sired setting with one hand. Usually one end of the slide projects beyond
the body of the rule. Should the right end project, the right hand is then
used to make the exact sctting. The thumb and forefinger of the hand
grasp the slide and at the same time press against the end of the body
of the rule. By this control an exact setting of the slide may be made

ADJUSTMENT, CARE, MANIPULATION 3

very quickly, the forefinger and thumb doing the precise work. In case
the left end of the slide projects, the left hand is used in the same manner
to make the setting.

The above methods of manipulation are those used by the writer but
it is realized that the student may develop his own methods. Those
given, therefore, should be regarded merely as suggestions from one who
has learned to use the instrument.



Chapter 2
THE SCALES OF THE SLIDE RULE

This chapter contains a brief description of the scales and how to
read them. Much more information concerning the scales and their uses
is given in later chapters. This discussion, however, should provide
the student with a background and a general acquaintance with the
shde rule.

Scale Descriptions. The Post Versalog Slide Rule has 23 scales,
located and arranged in a convenient and logical manner. These scales
will permit the solution of any kind of arithmetical problem except
adding and subtracting. Each scale is designated on the rule by a letter
or a combination of letters and symbols which appears at the left end
of the scale. All of the scales (except the L scale) are logarithmic, which
means that the distances along the seales are proportional to the logar-
ithms (to the base 10) of the numbers or functions represented.

Probably the scales most often used are those marked C and D. For
convenience these appear on both sides of the rule. They are identical
in markings and length, the D scale appearing on the body, and the
C scale appearing on the movable slide. The scale length is 25 ¢m. or
9.84 in. This is slightly less than 10 in. although the instrument is com-
monly called a 10 inch slide rule. The scale equation is x = 9.84 logN,
where x is the distance in inches from the left end to any number N
appearing on the scale. The C and D scales are used for multiplication
and division and in conjunction with all of the other scales on the rule.

The CI scale, on the slide, is exactly the same as the C and D scales,
except that it is graduated and numbered from right to left. Its use for
rapid, efficient multiplication and division is explained in a later chapter.
Numbers appearing on the CI, inverted scale, are reciprocals of numbers
directly opposite on the C scale.

The DF, folded scale, located on the body of the rule, is of the same
construction and length as the D seale, bul begins and ends at «. This
places the 1 mark very near the mid point of the scale. The convenience
of this arrangement for rapid work and for certain types of calculations
is explained later. The CF scale is identical to the DF scale but is located

4
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on the slide. The CIF scale is identical to the CF scale, except that it
is numbered and graduated from right to left, and numbers on the
CIF scale are reciprocals of those directly opposite on CF.

The L scale is used to obtain common logarithms (to the base 10).
When the hairline is set to any number on the D scale, the mantissa of
its common log is read at the hairline on the L scale. Since the D scale is
logarithmie, the L scale is an ordinary, uniformly divided, or natural
scale.

The R, and R; scales are used for obtaining squares and square roots
directly. When the hairline is set on any number on an R scale, its
square appears at the hairline on the D scale.

The K scale is used for obtaining cubes and cube roots directly. When
the hairline is set to a number on the D scale, its cube appears at the
hairline on the K scale.

The log log scales LLO, LL1, LL2, and LL3 are called the LL scales
and are used to obtain powers and roots of numbers from 1.001 to 22,000.
Fractional and decimal powers are easily handled with these scales.
Powers of e (the base of natural logarithms) are also obtained directly
on the LL scales by setting the hairline to the power desired on the
D scale. For the log log scales the scale equation is x = 9.84(loglog. N2 —
loglog.N:) in which x is the distance in inches between numbers N; and
N: appearing on any LL scale.

The scales designated LL/0, LL/1, LL/2, and LL/3 are called the
reciprocal log log scales and are used in the same manner as are the
LL scales, but for numbers less than 1. These are also log log scales and
the same scale equation applies to them. Their range extends from
0.00005 to 0.999 and the numbers and graduations extend from right
to left. When the hairline is set to a number on the D scale, the recip-
rocal of e raised to the power of this number is read directly on a re-
ciprocal log log scale.

The log log scales are in reality one-quarter lengths of a single long
scale. For example each of the LL scales is 25 cm. in length, equal to
one-fourth of a meter. The numbering of the LLO scale begins at 1.001
and ends at 1.01; LLI begins at 1.01 and ends at 1.105; LL2 begins at
1.105 and ends at e; and LL3 begins at e and ends at 22,000. If these
four scales could be placed end to end, a single scale one meter in length
would result.

An important property of the log log (LL) scales is that they repre-
sent powers designated e* whereas the reciprocal log log scales represent
reciprocals 1/e*, which are the same as e~*. Hence any number on an



6 SLIDE RULE SCALES

LI scale has its reciprocal directly opposite on the corresponding re-
ciprocal log log scale. For example, the reciprocal of a number on LL1
is directly opposite on LL/1 and the reciprocal of a number on LIL2 is
directly opposite on LI./2. It will be noted that reciprocals of numbers
close to 1 may be obtained with extreme accuracy. Many of the other
advantages and uses of the log log scales will be explained in a later
chapter.

The Cos S scale is used to obtain sine and cosine functions of angles
and is graduated in degrees and decimals of degrees. With the hairline
set at the angle on the S scale the sine of the angle is read on the C scale.
For sines the scale is graduated from left to right from 5.74 degrees to
90 degrees. To obtain the cosine of an angle the hairline is set at the
angle on the Cos scale and its cosine function is read on the C scale.
For cosines the scale is graduated from right to left from zero to 84.3
degrees.

The T scale is used to obtain the tangent of angles from 5.71 degrees
to 84.3 degrees. For angles in the range of 5.71 degrees to 45 degrees
this scale is graduated from left to right. When the hairline is set to an
angle in this range, its tangent function is read on the C scale. For
angles from 45 degrees to 84.3 degrees the hairline is set at the angle
and its tangent is read at the hairline on the CI scale. In this range the
scale is graduated from right to left.

An additional scale marked Sec T ST is provided for determining the
tangent funetion of small angles varying from 0.57 to 5.73 degrees. This
scale is graduated from left to right in this range and is used with the
C scale. It may also be used for determining the sine function of small
angles since if the angle is small sine and tangent functions are nearly
equal. For large angles the scale is numbered and graduated from right
to left for use with the CI scale. In the range of 84.27 to 89.43 degrees,
with the hairline set to the angle on this scale, either tangents or secants
are read at the hairline on the CI scale. In this range the tangent and
the secant are nearly equal.

More detailed explanations for the trigonometric scales are given in
Chapter 6 on “Trigonometric Operations.”

Reading the Scales. The construction and reading of the D scale
only will be explained here, since with this information the student will
be able to read any of the other scales. In Fig. 2 a logarithmic curve is
shown. The abscissa of any point on the curve is a number N while the
ordinate of the same point is the common logarithm of N. On the D scale

SCALE READINGS 7

5

the figures 1 to 10 represent the numbers
N, whereas the distance from the end
of the scale to any number N is pro-
portional to logwpN. Sinece the curve is
not a straight line the scale is not uni-
formly divided. For example, the dis-
tance from 1 to 2 on the rule is 9.84
logw2 = 2.96 in. whereas the distance :
from 2 to 3 is 9.84 (logwd — logw2) = ! Do
1.74 in. IR
Since the distance between 1 and 2 on rz o3 szE:S N’ 6 9 n
t-he D sc:.zle: is rel'atn'rely lon.g, it was pos- Fig. 3—Logarithmic Curve.
sible to divide this distance into 10 major
lengths, to subdivide each of these major lengths into 2 secondary
lengths, and in turn to subdivide each of these into 5 tertiary lengths.
All of the distances between division marks are proportional to the
differences of logarithms of the numbers represented. The shortest
distance between tertiary divisions is still great enough so that the eye
is not confused in reading the scale. In fact it is possible to set the fine
hairline by eye at a point befween the smallest division marks, estimat-
ing its location to the nearest tenth of the length for very aceurate
settings. Hence settings of 4 digit accuracy may be made for numbers
whose first digit is 1. In Fig. 3 four different hairline readings are
given, each to 4 significant digits. The readings which the operator
would take from the slide rule are shown directly above each long
vertieal line.

LOG,o N
N ol A N DL
~

o N

1060 1200 1308 1447

o)

ll'llT"l 'lllll'll 'lrll’ll’ T‘Ill‘flT lllllllll [T"ITTI
| T ! I l I

I a
I I l

Fig. 3—D Scale Readings.

Between numbers 2 and 3 and also between numbers 3 and 4 on
the D scale, the distance is divided into 10 major lengths, each of which
is subdivided into 5 secondary lengths. Again the hairline may be set
by eye between the smallest division marks. Settings of 3 to 4 digit
accuracy may therefore be made on this part of the scale.

For the remainder of the scale, for example, between numbers 4 and
5, 10 major divisions are provided, each space being subdivided into
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2 secondary lengths. The hairline may be set by eye between the smallest
division marks with precision, to give 3 digit accuracy for numbers
whose first digit is 4, 5, 6, 7, 8, or 9. In Fig. 4 five different hairline
readings are given.

618 673 797 840 952

|

T ‘ T "qTII|llf[l[Tll‘l'lll‘ll!|lll[ITr"l‘lll||‘l‘l‘lll‘l‘li|‘l|\|i||‘l‘|1“1’]’|illl‘
6 ( 7

9 10

Fig. 4—D Scale Readings.

Accuracy. The left end of the D scale, for numbers having 1 as
the first digit, is accurate to 4 significant figures whereas the right
end of the seale 1s aceurate only to 3 significant figures. Since both ends
are used, the accuracy as a whole is limited to 3 significant figures. Such
aceuracy is all that is required for ordinary design calculations.

Effects of Errors in Reading the Scale. In case the hairline is set
incorreetly or the reading is made incorrectly, the effect may be evalu-
ated by use of the scale equation previously stated as x = 9.84 logsN,
in which x is the distance in inches from the left end of the scale to any
number N appearing on the scale. Taking the derivative of both sides

with respeet to N, the following equation results: %\1; = 2.3026(;;—4 .

The term (»lN\— is the relative error in the number N, while % is the

relative error in reading or setting the hairline. Therefore the relative
crror in the number is independent of the size of the number or its
location on the scale and is 2.3026 times the relative error in reading
the seale.

Chapter 3
MULTIPLICATION AND DIVISION

Multiplication and division are performed on the slide rule by the
simple process of adding or subtracting logarithms. The logarithm of
the product of two numbers is equal to the sum of the logarithms of
the numbers; the logarithm of the quotient of two numbers is equal to
the difference of their logarithms. Since the scales used are logarithmic
scales, products and quotients are obtained automatically simply by
setting the numbers directly opposite, one on a scale of the body, the
other on a scale of the slide.

Multiplication Using Lower Scale Combinations. In Fig. 5 the
D and the CI scales are used to multiply 2 by 4. The D scale is on the
lower part of the body and the CI scale is on the lower part of the slide.
Hence the D and CI scale combination is called a lower scale combina-
tion. (To avoid confusion only the scales being used are shown in Fig. 5
and in the figures which follow.) The addition of log 2 and log 1 to

Hairline ——l fog 4 .! Right

, Ingex

— -] -
—_ e |y
—
d— =N
=~

ot

log 8

Fig. 6—Use of D and CI Scale Combination for Efficient
Multiplication of 2 by 4.

obtain log 8 is shown. The distances along the scales are proportional
to the logarithms of the numbers. This is the reason why adding these
distances automatically adds the logarithms.

In this operation the hairline is used by setting it to the number 2 on
the D scale. The slide is then moved until the number 4 on the CI scale
coincides with the hairline. The answer 8 is read on the D scale opposite
the 1 mark, which is the right index of the CI scale. It is unnecessary

9



10 MULTIPLICATION AND DIVISION

to move the hairline again, since the answer is read by a glance of the
eye to the right index of the slide.

"The multiplication of 2 by 4 might have been performed less efficiently
by using the C and D scales as shown in Fig. 6. By this method the hair-
line is set on 2 of the D scale; the slide is moved until the 1 mark or left
index of the C seale coincides with the hairline; then the hairline is

log 4

Slide 7

Left Index ——.

@
o
-~
®
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5
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10g 8

Fig. 6—D and C Scale Combination Used Inefliciently to Multiply 2 by 4.

moved to 4 on the C scale in order to read the result 8 at the hairline
on the D seale. This method of multiplication requires two movements
of the hairline instead of one and ordinarily requires a much greater
movement of the slide. It is not recommended for use in multiplication
since it is wasteful of time and energy.

Multiplication should always start by setting the hairline to a number
on a D scale. The slide should then be moved until the other number
on a CI scale coincides with the hairline. The product is then read on
a D scale by glancing at the index of the slide. (A D scale may be either
D or DT, a CI scale either CI or CIF.)

The multiplication of 2 by 4 in Ivig. 5 required a slide movement to
the left so that the answer was read at the right index of the slide. The

fog 10
/ngAIO—(oq 8 log 8
| / Siide
Left index- {Cl o 9 8 7 & 5 4 3 > i
\\I ! | I 1 1 1 1 I ]
T T 1 T T ¥ T T T T
D / 2 3 4 5 6 7 8 9 I0
| 16 | !
I 16
L‘——cﬁl—*ﬁ Hairline
O

Fig. 7—D and CI Scale Combination for Multiplying 2 by 8.
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multiplication of two numbers such as 2 and 8 requires a movement of
the slide to the right so that the answer is read at the left index of the
slide, as in Fig. 7. The hairline is set on 2 of the D scale and the number 8
on the CI scale is moved to the hairline. Here it is noted that the scale

length log 2 — (log 10 — log 8) = log 2—1%2 = log 1.6, whereas we know
that the product of 2 and 8 is 16. Hence the result 1.6 is correct except
for the decimal point. We do not use the slide rule to determine a
decimal point anyhow because a rough calculation easily locutes the
decimal point. Therefore the product 16 is read on the D scale at the
left index of the slide.

A point to emphasize is that either the left or the right index, which-
ever is in contact with the D scale, is used to read the result on the
D scale.

Division using Lower Scale Combinations. In dividing two num-
bers a D and C scale combination should be used for the most efficient
operation. Dividing involves subtracting logarithms. The example of
Fig. 8 indicates the division of 9 by 6. In this caselog 9 — log 6 = log 1.5.
The slide has been moved to the right. Therefore the quotient 1.5 is
read on the D scale at the left index of the C scale.

log & II——ch'rline

5
i

1 T
7 8

{

6 7 8
| ! |
T

9 0
{

9 10
1

W—t-N
o —4 &

loq 9

]
Fig. 8—D and C Scale Combination for Dividing 9 by 6.

Another example is shown in Fig. 9 in which 1.8 is divided by 2.5.
The hairline is set to 1.8 on the D scale. Then 2.5 on the C scule is
moved to the hairline. The result 0.72 is read on the D scale at the
right index of C since the slide was moved to the left. From the figure
the scale distances are as follows: log 1.8 4 log 10 — log 2.5 = log
1.8(10)

2.5
decimal point. This is located by mental calculation since dividing 1.8
by 2.5 obviously results in a number less than 1.

= log 7.2. The figure 7.2 is correct except for the location of the
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tog 10
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Fig. 9—D and C Scale Combination for Dividing 1.8 by 2.5.

Use of the Upper Group of Scales. There is an upper group of
scales designated DF, CF, and CIF. The DF scale is on the upper part
of the body; the CF and CIF scales are on the upper part of the slide.
These scales may also be used for multiplying and dividing since they
are identical in construction to the D, C and CI scales, except that the
index of each is very near the middle of each scale. The letter F indicates
that these are folded scales, beginning and ending at points other than 1.
The symbol = appears at the left end of the DF scale. This symbol
should be directly opposite the number 1 of the D scale. (Check this by
setting the hairline over = on the DF scale.) It is easy to multiply by .
Simply set the hairline on a number on the D scale and read = times
the number on DF. For example, setting the hairline on 2 of the D scale,
we read 6.28 on DF. Since the DF scale begins with log =, by moving
the hairline a scale distance of log 2, we are adding log = to log 2. Since
log w4 log 2 = log 2w, the product 2r = 6.28 is read on DF at the
hairline.

The same relationship exists on the slide with the C and CF scale
combination. With the hairline set on any number on C, we read = times
the number on CF.

Fig. 10 shows the use of the upper scales in multiplying. Here 1.1 is
multiplied by 1.2 by setting the hairline to 1.1 on DF and moving 1.2
on C'1I' to the hairline. The product 1.32 is read on DF at the 1 mark
or index of the CIIF scale.

Let it be assumed that the slide was centered, with all indices in line,
before beginning the calculation. From Fig. 10 the total movement of
the slide from its centered position was proportional to log 1.1 4
log 1.2 = log 1.32. The left index of the C scale has moved exactly the
same distance, so that the answer might also be read on the D scale,
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at the left index of C. Hence either the DF or the D scale may be read.

The lower C and CI scales have two indices, one at each end, while
the upper CF and CIF scales each have only one index, near the center.
Note that wherever the slide is moved, the lower index reading on D
is the same as the upper index reading on DF.

tog 1.32
F—Hqirline 132
log ""l Index of CIF

P
nt
OFT 4 S5 6 7 8 9 | 2 aw
| T S A S i B | L
99 "2/4_———\-—%| P | l
Stide-{CIF 3 2 4 i98 7 6 S 4 3
c | 2 T3 4 s 6 7890
I3 I 1 T T T T T |I —r .
; | 2 3 4 S 6 7 8 9 i0

Fig. 10—DF and CIF Scale Combination for Multiplying 1.1 by 1.2.

For multiplying 1.1 by 1.2 there is a definite advantage in using the
upper scales. The total movement of the slide from its centered position
in Fig. 10 was 1.18 in. Had the D and CI scale combination been used,
a slide movement of 8.66 in. would have been required. The advantage
of the upper group of scales for certain operations is therefore
obvious.

Division may be performed on the upper group of scales as follows:
to divide 8 by 2 efficiently, set hairline to 8 on DF and move 2 on CF
to hairline; read 4 on DF at index of CF, or read 4 on D at right index
of C. This requires a slide movement of about 3.9 in. If the same opera-
tion were performed by using the C and D scale combination, a slide
movement of about 5.9 in. would be required.

Choice of Lower or Upper Scale Combinations. For some opera-
tions the choice of scale combinations makes no difference in efticiency,
either the upper or lower group may be chosen. For other operations a
lower scale combination is more advantageous, while for still other
operations an upper scale combination is best. To determine which
combination is best to use, a general rule is desirable. Such a rule may
be stated definitely as follows: Either lower or upper scale combinations
may be used for multiplication and division, but whenever one scale com~
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binalion requires moving the slide more than one-half its length, use the
other. By following this rule the maximum slide movement required is
one-half of 9.84 in. or about 5 in.

The student should perform the following exercises in multiplication
and division in order to familiarize himself with the six scales and their
most cfficient uses. A mental calculation or a few rough figures set down
on paper will serve to locate decimal points. No attempt should be
made to read results more accurately than the instrument allows. In
this conncetion it will be remembered that accuracy is limited to four
significant figures for numbers whose first digit is 1 but to only three
significant figures for numbers beginning with the digits 2 to 9. The D
and CI or the DF and CIF scale combinations should always be used
when multiplying, whereas the D and C or the DF and CF scale com-
binations should always be used when dividing.

EXERCISES IN MULTIPLICATION

Perform the operation and indicate the most advantageous scale
combination. (Answers are given at the end of the manual for checking.)

1. 2.4 X3.02 7. 2.13 X 12.11 13. 4.15 X 26.2
2. 1.52 X 2.95 8. 1.49 X 1.32 14. 29.2 X 7.68
3. 612X 34 9. 9.12 X 8.25 15. 20.8 X 95.7
4. 1.57 X 2.2 10. 7.1 X 9.6 16. 42.5 X 14.24
5. 3.24 X 7.22 11. 5.13 X 9.08 17. 2.25 X 3720
6. 9.18 X 3.32 12. 33X 9.8 18. 392 X 10.33

EXERCISES IN DIVISION

Perform the operation and indicate the most advantageous scale
combination.

19. 9.3 =+ 3.08 25. 93 + 218 31. 93 + 6.5
20. 8.55 + 2.96 26. 8.55 + 10.5 32. 855 + 5.12
21. 748 + 2.63 27. 748 =+ 115 33. 7.48 + 3.54
22. 6.3 + 0.27 28. 63 + 14.2 34. 63 +175
23. 450 =+ 19.2 29. 450 + 104 35. 450 < 57.2
24. 1950 = 435 30. 1950 + 94.5 36. 1950 <+ 10.6

Multiplying or Dividing a Series of Numbers. A great advantage
in slide rule ealculation is that any number of factors may be multiplied
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together in one continuous operation to obtain their product. In terms
of logarithms, the addition of the logarithms of a series of numbers is
equal to the logarithm of the product of the numbers. If more than two
factors are to be multiplied together, the logarithms of the first two are
added automatically on the slide rule scales and to this sum the loga-
rithm of the next factor is added by the next setting, to this sum is
added the logarithm of the next factor, and so on, for any number of
factors. Therefore it is not necessary, as in long hand multiplication, to
multiply the factors two by two and then to multiply these separate
products. A simple example will serve to illustrate the procedure:

141 X 7.25 X 2.02 X 8.1 = 167.3

In order to obtain the product 167.3 by slide rule we set the hairline
on 1.41 on the D scale, move 7.25 on CI to the hairline, move the hair-
line to 2.02 on C, and move 8.1 on CI to the hairline. The product 167.3
is read on the D scale at the left index of C. Only the final result needs
to be set down on paper. About thirty seconds are required to do the
entire operation. By either long hand or electric calculator multiplica-
tion we would first multiply 1.41 by 7.25 to obtain 10.2225; then we
would multiply 2.02 by 8.1 to obtain 16.362; then 10.2225 would be
multiplied by 16.362 to obtain 167.2605450. The numbers 10.2225 and
16.362 would need to be set down on paper or transferred to another
dial, even if a calculator were used. Of course the final result 167.2605450
is accurate to ten significant figures. However, in ordinary design cal-
culations such accuracy is unnecessary and time is therefore wasted in
doing unnecessary work. Our slide rule result 167.3 is accurate to four
significant figures, a degree of accuracy usually sufficient.

On the slide rule, division is just as easy as multiplication. In fact,
to divide by a number we need only multiply by its reciprocal. Due to
the presence of the reciprocal or “I” scales as well as the others we may
choose the most convenient scale to perform either multiplication or
division when a series of factors is involved. It will be well to keep in
mind that in multiplying one must add logarithms and that in dividing
one must subtract logarithms. By noting, always, the direction of the
numbering and graduations of the scales one plans to use, errors will be
avoided. A number of examples follow, illustrating the use of the scales
in combined multiplication and division. The student should work
through these examples and check the results.
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3.25 X 4.28 X 9.13 = 127
Operations

Set hairline to 3.25 on D.
Move 4.28 on CI to hairline.

4.7 X 5.24 X 10.12 = 249
Operations
Set hairline to 4.7 on D.

Move 5.24 on CI to hairline.

Move hairline to 9.13 on CF.
Read 127 on DI at hairline.

Move hairline to 10.12 on C.
Read 249 on D at hairline.

6.45 X 7.51
825~ 086

Operations
Set hairline to 6.45 on DF.

Move 7.51 on CIF to huairline.

Move hairline to 8.26 on CIF.

Read 5.86 on DF at hairline:

Performing the operations in this
way first adds the log 6.45 to the
log 7.51, then subtracts log 8.26,
the result. being log 5.86.

It is also possible to do the work
as follows:

Set hairline to 6.45 on D.

Move 8.26 on C to hairline.

Move hairline to 7.51 on C.

Read 5.86 on D at hairline.

(This method first subtracts log
8.26 from log 6.45, then adds log
7.51.)

It is believed that fewer errors result by first using all factors in the
numerator, then next using all factors in the denominator. In this way
one first coneentrates on continuous multiplication, then on continuous
division, without alternating from one process to the other. Therefore
the first method given for solving the last example is preferred.

120 X 8.25 X 19.1 X 9.6 30.6 X 41.2 X 5.41
505 X321 X 504 x 25 ~ Y98 Tgogix7g = 0-561
Operations Operations

Set hairline to 120 on D. Set hairline to 30.6 on D.

Move 825 on CI to hairline.
Move hairline to 19.1 on C.
Move 9.6 on C1 to hairline.
Move hairline to 40.5 on CI.
Move 3.24 on C to hairline.
Move hairline to 50.4 on CIL.
Move 25 on C to hairline.

Read 1.098 on D at left index of C.

Move 41.2 on CI to hairline.
Move hairline to 5.41 on C.
Move 40.8 on C to hairline.
Move hairline to 40.8 on CI.
Move 7.3 on C to hairline.

of C.

Read 0.561 on D at right index
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100 X (60.5)%

= = 0.0235
48 X 3(10)* X 6535

Operations

Set hairline to 60.5 on DF,
Move 60.5 on CIF to hairline.
Move hairline to 60.5 on C.
Move 48 on C to hairline.
Move hairline to 3 on CI.
Move 655 on C to hairline.
Read 0.0235 on D at hairline.

The decimal point may be located by a rough caleulation by setting
down the numbers rounded off, and using a cancellation process, thus

2
100x80x60x60 72 7.2

5Px3x1099Px700 ~ 3500 350
We observe that 7.2 is divided by a number greater than 100 but
less than 1000. Therefore the result is a number less than 0.072 but
greater than 0.0072. The slide rule gives us the three significant figures
235, so that the result must be 0.0235.

EXERCISES IN MULTIPLICATION AND
DIVISION OF A SERIES OF FACTORS

7.85 X 204 X 82.6

37. 12.1 X 2.36 X 4.25 49 TERAZH X S

38. 5.72 X 6.25 X 7.13 56

39. 7.48 X 802 X 920 B g ey 0
2.2 1

40. 755 Y I X171 X995
8.24 X 9.13 45 1080

4l 1012 X 147 © (2942 X 76

(21.2)* X 8.95
" 17.6 X 61.7 X 4.6

46

Multiplication or Division of a Single Factor by a Series of
Numbers. In engineering calculations it is frequently necessary to
obtain the products of several different numbers each multiplied by the
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same single factor. In this type of problem the best procedure is to set
the index of the C scale to the single factor on the D scale and to use the
D and Cor the DI and CT scale combination for multiplying. By this
method only the hairline needs to be moved to perform the successive
multiplications. Suppose, for example, 1.27 is to be multiplied in turn
by 3.16, 4.28, 6.55, 8.4, and 9.85:

Set the left index of C to 1.27 on D.

Move hairline to 3.16 on C, reading 4.01 on D,
Move hairline to 4.28 on C, reading 5.44 on D.
Move hairline to 6.55 on C, reading 8.32 on D.
Move hairline to 8.4 on CF, reading 10.67 on DF.
Move hairline to 9.85 on CF, reading 12.51 on DF.

Division of a single factor by a series of numbers is illustrated by
the following example. Suppose 41.5 is to be divided in turn by 12.4,
20.8, 44.5, and 92. For this work it is best to use the reciprocal scales
CI and CIF for division:

Set right index of CI to 41.5 on D.

Move hairline to 12.4 on CI, reading 3.35 on D.
Move hairline to 20.8 on CI, reading 1.995 on D.
Move hairline to 44.5 on CIF, reading 0.933 on DF.
Move hairline to 92 on CIF, reading 0.451 on DF.

In setting an index of the slide in the above operation, either the
left or the right index of the slide might have been used. It should
be remembered, however, that the slide need not be moved more than
one-half of the scale length. The number 3.16 of the D scale is located
approximately at its mid point. Thercfore for a single factor less than
316, set the left index; for one greater than 316, set the right index of the
slide. If this rule is followed the single factor may be either multiplied
or divided by any number without again moving the slide. It is only
necessary to move the hairline to perform the suceessive operations.

EXERCISES
47. Multiply 320 successively by 1.15, 2.42, 3.18, 4.5, 5.42, 6.88, 7.96,
8.05, and 9.6.

48. Divide 7.18 successively by 1.02, 2.15, 3.29, 4.18, 5.67, 6.41, 7.85,
8.76, and 9.34.
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Proportion. The principle of proportion is convenient in solving
simple equations without having to solve the equations explicitly for
the unknown. The use of proportion in this manner is perhaps best
illustrated by the use of simple algebraic expressions. Let x be the un-
known quantity which is to be solved for when the known quantities
i=—]2,C’ D, and C are
¢ c
known and x is to be determined. If we set the number D on a I) scale
(D or DF) opposite C on a C scale (C or CF), x may be read directly
on the D scale opposite C’ on the C scale. For example, to solve for x in
X - gﬁ, set 24.4 on D opposite 41.5 on C; opposite 25 on C, read
25 41.5
x = 14.7on D.

’ .
In an expression such as Dr_ %, set D on a D scale opposite C on a
X

are C’, D', C, or D. In a proportion such as

C scale and read x on the C scale opposite D’ on the D scale. As an

. . 14 e -
example, to solve for x in 3?{—8 =7 set 14 on DF opposite 71 on CF.

Now opposite 39.8 on D, read x = 202 on C.

EXERCISES
By use of the principle of proportion, solve the following examples:
19, = 0 s2. 1520 _ T
50. Tar = 2 53. 30 = 222
51. Z;lg = %

Solution of the Quadratic Equation by Factoring. If any quad-
ratic equation is transformed into the form x? + Ax + B = 0, the roots
or values of the unknown x may be determined by a simple method,
using the slide rule scales. We let the correct roots be —x; and —x.. By
factoring, (x + x1)(x + x2) = 0. The terms —x; and —x2 will be the
correct values of x providing the sum x; + x. = A and the product
%1.Xx2 = B. An index of the CI scale may be set opposite the number B
on the D scale. With the slide in this position, no matter where the
hairline is set, the product of simultaneous CI and D scale readings
or of simultaneous CIF and DF scale readings is equal to B. Therefore



20 MULTIPLICATION AND DIVISION

it is only necessary to move the hairline to a position such that the
sum of the simultancous CI and D scale readings, or the sum of the
simultancous CIF and DF scale readings, is equal to the number A.

As an cxample, the equation x? 4 10x + 15 = 0 will be used. We
set the left index of CI opposite the number 15 on the D scale. We then
move the hairline until the sum of CI and D scale readings, at the hair-
line, is equal to 10. This occurs when the hairline is set at 1.84 on D, the
simultancous reading on CI being 8.15. The sum x; + x. = 1.84 4
8.15 = 9.99, sufficiently close to 10 for slide rule accuracy. Roots or
values of x are therefore —x; = —1.84 and —x, = —8.15. Obviously
the values of x solving the equation x2 — 10x 4 15 = 0 will be 4-1.84
and -+8.15 since in this case A is negative, equal to —10.

As a second example the equation x? — 12.2x — 17.2 = 0 will be
used. The left index of CI is set on 17.2 on the D scale. Since this number
is actually negative, —17.2, and since it is the produet of x; and xa,
obviously one root must be positive, the other negative. Also the sum
of x; and x» must equal —12.2. We therefore move the hairline until
the sum of simultaneous scale readings is equal to —12.2. This occurs
when the hairline is set on 13.5 on the DF scale, the simultaneous read-
ing at the hairline on CIF being 1.275. x, is therefore —13.5 and x; is

1.275, since x; + xp = —13.5 + 1.275 = —12.225, sufficiently close to
—12.2 for slide rule accuracy. The values of x solving the equation are
therefore —x; = 13.5 and —x» = —1.275.

EXERCISES

Solve the following quadratic equations for values of x:
4. x* — 34.53x + 18 = 0.
53. x* — 21.14x 4+ 32 = 0.
ox®— 20.2x — 120 = 0.
. 2x* 4 82.8x + 840 = 0.
58. 1.2x* — 13.38x + 36 = 0.

T O

r
f=r}

o]
=1

Chapter 4

SQUARE ROOT AND SQUARES,
CUBE ROOT AND CUBES

Square Root and Squares. The Post Versalog Slide Rule is equipped
with two root scales, R: and Rs. These scales are used with the D scale
to obtain square roots directly with considerable accuracy. If the hair-
line is set to any number on the D scale, the square root of the number
is read at the hairline on R, or Rs. For convenience the R, and R, scales
are located on the body of the rule directly below the D scale. The R;
and R, scales are component parts of a single long scale 50 cm. in length.
Ry, 25 cm. long, is graduated and numbered from left to right from 1
to 4/10, while R,, also 25 c¢m. long, is graduated and numbered from
left to right from /10 to 10.

The root seales are also used to obtain squares of numbers. For num-
bers between 1 and /10 (equal to 3.162), if the hairline is set at the
number on R,, its square is read at the hairline on D. For numbers be-
tween 3.162 and 10, if the hairline is set at the number on Ry, its square
is read at the hairline on D.

The simple mathematical relationship of the R and D scales may be
expressed as follows: R? = D. Taking logarithms of both sides of the
equation, 2 log R = log D. Therefore the scale distance, from the index
to any number on the R scale is twice the scale distance to the same
number on the D scale. This means that readings of the R scales are
lwice as accurate as readings of the D scale.

Examples in the use of the square root scales follow:

Vv9=3 /90 = 9.49
Operations Operations

Set hairline to 90 on D.
Read 9.49 on R; at hairline.

Set hairline to 9 on D.
Read 3 on R, at hairline.

V250 = 15.81 4120 = 64.2
Operations Operations

Set hairline to 4120 on D.
Read 64.2 on R. at hairline.

Set hairline to 250 on D.
Read 15.81 on R; at hairline.

21
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/57,500 = 239.8
Operations

Set hairline to 57,500 on D.
Read 239.8 on R, at hairline.

/605,000 = 778

Operations

Set hairline to 605,000 on D,
Read 778 on R: at hairline.

/2,720,000 = 239.8
Operations

Set hairline to 2,720,000 on D,
Read 1649 on R, at hairline.

It will be observed that whenever the number has an odd number of
digits its square root appears on R, and whenever the number has an
even number of digits its square root appears on R,.

As in all the previous examples, the square root of a number larger
than 1 is smaller than the number. However, the square root of a num-
ber smaller than 1 will be greater than the number. This type of problem
is illustrated by the following examples:

4V 0.05 = 0.2236

Operations

Set hairline to 0.05 on D.
Read 0.2236 on R, at hairline.

4/0.5 = 0.707
Operations

Set hairline to 0.5 on D.
Read 0.707 on R; at hairline.

1/ 0.0005 = 0.02236

Operations

Sct hairhine to 0.0005 on D.
Read 0.02236 on R, at hairline.

4/0.005 = 0.0707
Operations

Set hairline to 0.005 on D.
Read 0.0707 on R: at hairline.

1/0.000005 = 0.002236
Operations
Set hairline to 0.000005 on D.

Read 0.002236 on R, at hairline.

4/0.00005 = 0.00707
Operations
Set hairline to 0.00005 on D.

Read 0.00707 on R; at hairline.
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From the above examples it is apparent that when the number of
zeros to the right of the decimal point is odd, the square root is read on
the Ry scale. When the number of zeros to the right of the decimal point
is even, the square root of the number is read on the R; scale. Also when
there are mo zeros to the right of the decimal point the square root is
read on Ra..

In squaring a number we set the number on the R, or R. scale and
read its square on the D scale. The number of digits in the result is
easily determined. The square of a number set on R; will have an odd
number of digits, while the square of a number set on R, will have an
even number of digits. For example, in squaring 350 we set the hairline
to 350 on R;, hence the square will have an even number of digits. On
D we read the figures 1225. Since the number 350 has three digits, its
square will have six digits, an even number. The square is therefore
122,500. Other examples follow:

(250) = 62,500

Operations

Set, hairline at 250 on R,.

(Result will have an odd number of digits, one less than twice the
number being squared.)

Read 62,500 on D at hairline.

(4.5)? = 20.25

Operations

Set hairline on 4.5 on R,.
(Result will have even number of digits.)
Read 20.25 on D at hairline.

(1,748)* = 3,060,000

Operations

Set hairline at 1748 on R;.
(Result will have odd number of digits.)
Read 3,060,000 on D at hairline.
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(682)2 = 465,000

Operations

Set hairline at 682 on R..
(Result will have even number of digits.)
Read 465,000 on D at hairline.

In squaring a given number less than 1 occurring on R;, the number
of significant zeros in the result will be twice those in the given number
plus one zero. For any given number occurring on R, the square will
have exactly twice the number of significant zeros as the given number.
For example:

(0.169)2 = 0.0286

Operations

Set hairline to 0.169 on R,.

(Result will have odd number of zeros to the right of the decimal
point.)

Read 0.0286 on D at hairline.

(0.043)* = 0.00185

Operations

Sct hairline to 0.043 on Ro.
(Result will have even number of zeros to the right of the decimal

point.)
Read 0.00185 on D at hairline.

Areas of Circles. One decided advantage of the root scales is that
arcas of circles may be obtained simply by setting the hairline to the
radius of the circle on R; or Rs. The arca may then be read on the DF
scale at the hairline. No slide movement is required. Since the area of a
circle is 7132 the value of R? on the D scale is multiplied by = when the
DF seale is read. For example, the area of a circle whose radius is 0.375
is obtained by setting the hairline at 0.375 on R, and reading 0.442 at
the hairline on DF.
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EXERCISES

Perform the indicated operations using Ry, Rz, and D scales:

59. v/6 63. v/71,500
60. \/27 64. /820,000
61. /925 65. /1,970,000
62. v/1,265 66. /51,000,000
67. (20.4)* 71. (0.85)?

68. (715)* 72. (0.094)?

69. (1,070)? 73. (0.0076)?
70. (125.4)% 74. (0.000157)*
75. +/0.424 77. 4/0.00725
76. 4/0.0875 78. 4/0.00094

79. Calculate the areas of circles whose radii are 0.125, 0.1875, 0.25,
0.3125, 0.4375, 0.5.

Cube Root and Cubes. The K scale is the cube scale of the slide
rule. With the hairline set on a number on the D scale, its cube may
be read at the hairline on the K scale. If the cube root of a number is
desired, the hairline is set at the number on K and the cube root is
read at the hairline on D. These two scales are of equal length. Mathe-

log K, the K scale is divided into

matically, since D® = Kandlog D =

three equal segments, each segment graduated and numbered from left
to right. The first segment extends from 1 to 10, the second from 10 to
100, and the third from 100 to 1,000. Since the scale distance from the
index to a number on K is only one-third the scale distance to the same
number on D, the accuracy of K setale readings is only one-third that
of the D scale readings.

The most efficient use of the K and D scale combination is achieved
by observing the location of the decimal point. Since the three segments
of the K scale are graduated and numbered between ranges 1 to 10, 10
to 100 and 100 to 1,000, the operator should have no difficulty in plac-
ing the decimal point for numbers between 1 and 1,000. However, for
numbers less than 1 or greater than 1,000 the decimal point may be
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moved both before and after the operation to obtain a number within
the range of the scales. In such cases a definite rule may be followed: If
the decimal point is moved n number of places in a number set on D, it
must be moved back 3n places in the cube, which is read on K; or if
the deeimal point is moved n number of places in a number set on K, it

must be moved back g places in the cube root, which is read on D. For

example, to cube 0.456 we move the decimal point one place to the right.
By sctting the hairline at 4.56 on D we obtain 95 at the hairline on K.
We now move the decimal point back three places to the left to obtain
0.095. Other examples follow:
(0.0325)% = 0.0000343
Operations

Move decimal point two places to the right.

(3.25)% = 34.3

Move decimal point back six places to the left.
Result is then 0.0000343

(1,214)* = 1,790,000,000
Operations
Move decimal point three places to the left.
(1.214)% = 1.79

Move decimal point back nine places to the right.
Result is 1,790,000,000.

v/0.0052 = 0.173
Operations
Move decimal point three places to the right.
V5.2 = 1.73

Move decimal point back one place to the left.
Result is 0.173.

CUBE ROOT AND CUBES
/26,400 = 29.8
Operations

Move decimal point three places to the left.

v26.4 =298

Move decimal point back one place to the right.
Result is 29.8.

EXERCISES
Perform the indicated operations using the K and D scales:
80. v/6 83. v/1,720
81. v/24 84. v/29,000
82. /270 85. /560,000
86. (3.2)2 89. v/0.32
87. (41)3 90. +/0.041
88. (750)3 91. +/0.0075
92. (0.245)3
93. (0.036)®

94. {0.0048)%



Chapter 5

OPERATIONS INVOLVING POWERS,
RECIPROCALS, EXPONENTIAL EQUATIONS,
LOGARITHMS. USES OF THE LOG LOG
AND THE LOG SCALES

The log log scales are exceptionally useful in engineering calculations
which involve powers and exponents. As previously explained, square
roots and squares, cube roots and cubes, may be found by using the
special seales Ry, R,, and K. However, any power or root of a number
may be found by using the log log scales. For numbers close to one,
powers and roots are determined in this way with considerable accuracy.

One important feature of the log log scales is that the decimal point
is always given by the scale reading, so that it is unnecessary to de-
termine its location by additional ealeulation. This feature reduces the
chance for error. However, because of frequent changes in sub-dividing
along the scales and because of the extremely wide range of numbers
(from 0.00005 to about 22,000), eare must be used in reading the scales.
The sub-dividing should be carefully checked by eye for that portion
of any log log scale being used.

Powers of e and Reciprocals. The numbers on the log log scales
represent powers of ¢. Since all of the log log scales are located on the
body of the rule and are used with the D scale, the powers are read by
simply setting the hairline. If x represents a number to which the hair-
line is set on the D seale, values of ¢* appear at the hairline on the log log
scales. LLO, LL1, LL2, and LL3 (called the LL scales) are used for
positive powers of e; whereas L1/0, LL/1, LL/2, and LL/3 (called the
reciprocal log log scales) are used for negative powers of e. To aid the
operator in remembering this relationship the symbol x appears at the
left end of the D scale, the symbol e* at the left end of the LL scales,
and e7* at the left end of the reciprocal log log scales.

The scales are arranged symmetrically about the horizontal center
line of the rule. The arrangement is in the order of LL3, LL2, LL1 be-
low and LL/3, LL/2, LL/1 above, from the center line outward on one
face of the rule. Turning the rule over, LLO and LL/0 appear at the top.
The log log scales have black and the reciprocal log log scales red
numbering.
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The relationship of successive scales is that of one-tenth powers of e.
For example, if we set the hairline to the number 2 on D, we read
e =74 on LL3, ¢*? = 12215 on LL2, ¢** = 1.0202 on LL1, and
e"% = 1.002 on LLO. Since e? = (e"2)'%, 1.2215 is the one-tenth power
of 7.4. With the hairline set at 2 on D we may also read e = 0.135
on LL/3, ¢—°2 = 0.8187 on LL/2, 7% = 0.9802 on LL, 1, and ¢ % =
0.9980 on LL/0. Thus eight different powers of e are obtained with one
setting of the hairline.

To aid in reading powers of e on the log log scales, symbols have been
provided opposite the right ends, indicating the range of x covered by
each scale. The arrows indicate the directions of scale numberings.

Since e—= is the reciprocal of e*, any number on an LL scale has its
reciprocal directly opposite on the corresponding reciprocal log log scale.
In the above example the reciprocal of 7.4 is therefore 0.135 and the
reciprocal of 1.2215 is 0.8187, etc. In determining reciprocals in this
manner the decimal point is always given by the scale reading.

EXERCISES

Determine the following powers of e:

95. e.’), e0.4, 90'03, e0.008.
96. e—-4’ e—0.9, e-—O‘O’M, 6_0'0056.

Determine reciprocals of the following numbers by use of the log log
scales:
97. 8,500, 750, 64, 8.5, 0.951, 0.0754, 0.0056, 0.00014.

Hyperbolic Functions. The functions sinh x = }(e* — ¢7%), cosh
e2
x = }(e* + e7™), and tanh x = 1
stituting the powers of e read from the log log scales. For example,
sinh 0.434 = 1(1.544 — 0.648) = 0.448; cosh 0.434 = }(1.544 + 0.648)
2382 — 1
= ; . = ——— = (.408. Values e* = 0% =
1.096; and tanh 0.434 2382 1 1
1.544 and e= = e~943% = 0.648 were taken from the LL2 and LL/2
scales by only a single setting of the hairline to 0.434 on the D scale;
e = %88 = 2382 was read on LL2 with the hairline set at 0.S68 on

the D scale.

may be determined by sub-
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EXERCISES

Determine values of the following hyperbolic functions:

98. sinh 0.2 101. tanh 0.35
99. sinh 3.0 102. tanh 2.1
100. cosh 0.45

The inverse of the hyperbolic functions may also be evaluated by use
of the log log scales. If the value of a hyperbolic function such as sinh X,
cosh x, or tanh x is given or known, the value of x may then be found
by substituting the known value into the formulas given below; in which
A, B, or C are known:

If sinh x = A, then ex = A + +/A? + 1.
If cosh x = B, then ex = B + +/B? — 1.

If tanh x = C, then ex = \/l_tg
1-C
The recommended procedure is to first substitute the known values
mto the formulas, thus solving for e*. (The R; and R; scales are extremely
convenient for this work.) Then set the hairline to e* on the appropriate
log log scale and read x at the hairline on the D scale. For example, if
sinh X is given as 2.12, x may be evaluated as follows: since A = 2.12,
A+ VAY+1 =212+ /450 + 1 = 4.46. Now setting the hairline
to 4.46 on LL3, we rcad x = 1.496 at the hairline on D.

EXERCISES

Evaluate x, given the following values of the hyperbolic functions:

103. sinh x = 0.82 106. cosh x = 1.32
104. sinh x = 0.625 107. tanh x = 0.917
105. cosh x = 3.73 108. tanh x = 0.300

Powers of Numbers. Raising numbers to powers by using log log
scales is as simple as multiplication. Distances along the log log scales
are proportional to logilog.N where N is any number appearing on a
log log scale. Now if we wish to raise a number N to the exponent p to
obtain N, we must add the logwp by use of one of the scales on the
slide, either C, CI, CIF, or CF. In equation form this operation would
appear as follows:

Setting on Setting on Reading on
log log seale shde log log scale

logulogeN 4+ logwp = logiop.log.N = loglog.NP.
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The addition of the logarithm of the exponent p to the base 10 results
in logiLog.N®. For example, to raise 1.002 to the exp(?nfant 2, we set
the hairline to 1.002 on LLO, move 2 on CI to the hairline, move the
hairline to the right index of CI, and read 1.004 at the hairline on LLC.
In this example, N corresponds to the number 1.002 and p to Fhe ex-
ponent 2. We have added logi2 to logilogel.002 because the distance
moved by the hairline from 2 to the right index of CI was propor-
tional to logi2. The result is logilog.(1.002)? = logwloge 1.004. Hence,
(1.002)? = 1.004. Other examples follow:

(1.00555)1-7 = 1.00957

Operations

Set hairline at 1.00555 on LLO.
Move 1.72 on CI to hairline.
Move hairline to right index of CI.
At hairline read 1.00957 on LLO.

(1.00555)17* = 1.0998

Operations

As above, except that the reading is taken from the LL1 s.cale. Since
readings on LLI are tenth powers of readings directly opposite on LLO
and the exponent 17.2 is ten times the exponent 1.72, it was necessary
to read the LL1 scale. Other powers of 1.00555 may also be read with
the hairline in the same position. (1.00555)!"* = 2.589, read on LLZ2;
and (1.00555)1"% = 13,500, read on LL3.

(650)°% = 25.5

Operations

Set hairline at 650 on LL3.

Move right index of C to hairline.
Move hairline to .5 on C.

Read 25.5 at hairline on LL3.
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(650)°0-05 = 10329
Operations

As above, except read LLI to obtain 1.0329.

(0.99646)1-* = 0.99456
Operations

Sct hairline at 0.99646 on LL/0.
Move 1.54 on CI to hairline.
Move hairline to right index of CI.
At hairline read 0.99456 on LL/0.

(0.554)%-% = 0.0060
Operations

Sct hairline at 0.554 on LL/2.

Move right index of C to hairline.
Move hairline to 8.65 on C. .
At hairline read 0.0060 on LL/3. //

(0.00016)° = 0.0089 \/
Operations

Set hairline at 0.00016 on LL/3.
Move right index of C to hairline.
Move hairline to 0.54 on C.

At hairline read 0.0089 on LL/3.

(0.9435)22 = 0.275
Operations

Set hairline at 0.9435 on LL/1.

1 Move right index of C to hairline.
Move hairline to 22.2 on C.
At hairline read 0.275 on LL/3.
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Negative powers of numbers may be obtained by the use of recipro-

. _ 1 .
cals. Remembering that N ¥ = N Ve may use the operations neces-

sary to determine NP, then by reading the corresponding reciprocal
scale, N™" is obtained. For example, suppose we wish to find 2507,
We set the hairline at 25 on LL3, then move the right index of C to the
hairline. Now moving the hairline to 0.67 on C, the result would be
25967 if the LL3 scale were read. However, by reading L.I. 3 at the
hairline, the negative power 25-%7 = 0.116 is obtained.

EXERCISES
Determine the following powers of numbers:
109. (1.00164)** 113. (0.99325)°% 117. (415)=7%
110. (1.0446)% 114. (0.922)* 118. (1.31)-*2
111. (1.95)*7 115. (0.568)°* 119. (0.877)~%%
112. (31)°- 116. (0.114)°% 120. (0.99245)2

Exponential Equations. Equations of the form NP = A, in which
N and A are known quantities, may be solved for the unknown ex-
ponent p. The problem may be stated thus: to what exponent p must
N be raised so that the result is A? Steps in the process may be described
as follows: (1) set the hairline to the number A on a log log scale; (2) set
an index of CI or of CIF to the hairline; (3) move the hairline to the
number N on a log log scale; (4) read the exponent p on CI or CIF,
whichever one was used in step (2). This process is the reverse of that
used for determining powers of numbers. Examples follow.

(25.5)° = 17.5
Operations
Set hairline to 25.5 on LL3.
Move right index of C to hairline.

Move hairline to 17.5 on LL3.
At hairline read p = 0.884 on C.

(2.4)° = 185
Operations

Set hairline to 2.4 on L1L2.

Move right index of C to hairline.

Move hairline to 185 on LL3.
At hairline read p = 5.97 on C.
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EXERCISES
Solve for the exponent p in the following equations:

121. (9.1)» = 164
122. (3.25)» = 71.5

123. (0.915)® = 0.614
124. (0.425)* = 0.0174

Logarithms of Numbers. Common logarithms (logarithms to the
base 10) may be found directly by use of the L scale. If the hairline is
set to a number on the D scale, the mantissa of the common logarithm
of the number may be read on the L scale. Both D and L scales are
located on the body of the rule, hence no slide movement is required.
The characteristic of the logarithm must be determined mentally, keep-
ing in mind that log,1 is zero, loge10 is 1, log0100 is 2, etc. Any number
between 1 and 10 will therefore have a characteristic of 0 and any
number between 10 and 100 will have a characteristic of 1, ete.

Example 121, above, may be solved by the use of the L scale, although
not as ecasily or quickly as when the log log scales are used as pre-
viously explained. Since (9.1)P = 16.4, we may equate the logar-
ithms of both sides of the equation to obtain p.log 9.1 = logy 16.4, or
p = log 16.4 _ 1.215 — 1267

log0.1 0959

In the above example the hairline was set to 16.4 on D and the num-
ber 0.215 was read at the hairline on L. Since 16.4 is a number whose
magnitude is between 10 and 100, a characteristic of 1 was supplied to
obtain the complete logarithm 1.215. The logarithm of 9.1 was read as
0.959 on L, opposite the setting of 9.1 on D. The division of 1.215 by
0.959 was performed as a separate operation using the CF and DF scales
to obtain p = 1.267.

The log log scales are so constructed that logarithms to any base may
easily be determined. By this method complete logarithms including
both characteristic and mantissa are obtained directly. Let a number
“4" represent the base of logarithms which is to be used. Mathematically
then, a? = N or p = log,N, where the exponent or logarithm p is to be
determined for number N to the base “a’”. Taking logarithms of both
sides to thie base e, we obtain p.log.a = log,N or p = llog_eN. The nu-

0gcdd
merator log.N is determined by setting the hairline to the number N
on a log log scale, the numerator then appearing directly opposite on
the D scale. The denominator appears directly opposite the base “a’’
set on a log log scale. To obtain p the log.N is simply divided by log.a.
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As an example, in the expression logie 9.1, the base a = 10. Setting
the hairline to 10 on LL3, the index of CF is set to the hairline. The
hairline is then moved to 9.1 on LL3 and logi 9.1 = 0.959 is read at the
hairline on CF.

Logis 800 may be determined as follows: with the slide in the same
position as before, move the hairline to 800 on LL3 and read 2.90 at the
hairline on CF. This is not as accurate a result as can be obtained on
the L scale where the more exact mantissa 0.903 may be read. Since
the characteristic must be 2, the complete logarithm to the base 10
is 2.903.

To obtain logarithms, for example, to the base 8, we may set the
index of CF opposite 8 on LL3. Moving the hairline to a number vn an
LL scale, its logarithm to the base 8 is read at the hairline on CF. For
example logs 200 = 2.55.

In case many computations of the above type are to be made it will
be advantageous to remove the slide and to reinsert it reversed. This
will make it unnecessary to turn the rule over during the com-
putations.

Use of the Log Log Scales for the Solution of Compound Inter-
est Probléms. An interesting and useful property of the log log scales
is their application to compound interest calculations. The relationships
are expressed mathematically by the following equation:

rkn

In this equation V represents the value of an investment after n years
have passed and P is the principal sum, initially invested at an annual
rate of interest r, compounded k times each year.

As an example suppose we wish to determine the value of a Govern-
ment “E” War Savings Bond at maturity, after ten years. The cost or
principal invested is $18.75 and the rate of interest paid is approximately
2.9 per cent, compounded semi-annually. The rate of interest must be

divided by 100 to express per cent as a decimal. Therefore r = 0.029.
0.029\2

Then V = 18.75(1 + T) = 18.75(1.0145)® = 18.75(1.334) = $25.
The value of (1.0145)® was obtained by setting the hairline to 1.0145
on LL1, moving the left index of C to the hairline, moving the hairline
to 20 on the C scale, and reading 1.334 on LL2.
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As a second example, determine the rate of interest compounded
annually at which a given prineipal will double its value in a period of
12 years, In this case V=2 Pand 2P =P + )2 or (1 + )2 = 2,
Sctting the hairline at 2 on LL2, we move 12 on C to the hairline. We
then move the hairline to the left index of C and read 1 4 r = 1.0594
at the hairlne on LIL. The rate of compound interest is therefore
r = 0.0594 or 5.94 per cent.

Time Credit Payments. In installment buying the cost of an article
is ordinarily paid in monthly installments, each installment consisting
of the interest on the remaining unpaid balance plus an amount reduc-
ing the balance. Many people purchase homes, automobiles, furniture,
and other articles by this method. The annual rate of interest is
divided by the number of payments per year, which is twelve in the
case of monthly payments. The following equations express the
relationships:

Log s———
b — 1 Ng Py L N, o P—rS
! _‘S(1+(1+r)"—1)’s—— r(1 (1+r)“)’n_Log(1+r)

in which P is the amount of cach monthly payment, S is the entire sum
to be paid in n monthly payments, and r is the annual interest rate.
Suppose the buyer of an automobile wishes to pay $2000 of its cost
in monthly installments and has obtained a loan with an interest rate
of 6 per cent. What monthly payment must be made over a period of
two years m order to obtain title to the automobile?
0.06

r = *19— = 0.005 and n = 2(12) = 24.

P = 0.005(2, 000)(1 + 10(1 +

TR I) = Ti70=T)

P = $88.70 approximately.

The value (1.005)* was obtained by setting the hairline to 1.005 on
LLO, moving 24 on CI to the hairline, and reading 1.1270 at the
hairline on LL2. The monthly payment will be approximately $88.70
for two years. The total interest paid will be 24(88.70) — 2,000 =
$128.80.

Suppose the buyer wishes to pay $100 per month in order to retire
the loan more quickly. The number of months required to pay the full
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P
Logpg—g Logig5 =10 0.1052

amount will then ben = Tog 0 F r) Tog 1.005 = 0.00498 ~ 21.1.

or approximately 21 months.
As a second example determine the loan which can be retired in one

year by means of $50 monthly payments when 5 per cent interest is
charged.

r =1%~= 0.004167

P 1 ) __ 50 (,_ 1 )
$=2\1"a+p+/ = oooater\' T [T004167)"
S = $585 which is the amount of the loan which can be paid.



Chapter 6
TRIGONOMETRIC OPERATIONS

The Trigonometric Functions. Trigonometric operations are those
involving the ratios sine, cosine, tangent, cosecant, secant, and cotan-
gent of angles. These angular functions, the reader will recall, are ratios
of the lengths of the sides in a right triangle. In Fig. 11, these ratios
are stated for convenient reference.

a
. sin A = a/e cosec A = c¢/a
a cosA =Db/ec sec A = ¢/b
90° tan A = a/b cot A = b/a
A ™ c

Fig. 11—Parts of the Right Triangle.

The slide rule features mainly the sine, cosine and tangent functions,
since these are the most commonly used by engineers. Their reciprocals,
cosecant, secant, and cotangent may be determined by use of any of
the reciproeal slide rule scales.

Three trigonometrie scales are located on the slide. Since each scale
is numbered in two directions there are actually six scales. All six are
graduated in degrees and decimals of degrees and are designed to be
used with either the C or CI scale, depending upon whether a scale is
red or black. By setting the hairline at the angle, its function is read
at the hairline on C or CI. Thus the trigonometric scales may be used
for multiplying or dividing by angular functions just as are the C and
CI scales. Since the scales are numbered in both directions, any division
mark represents both the angle and its complement. It will be remem-
bered that the sum of an angle and its complement is 90 degrees. For
cxample in Fig. 11 angle B is the complement of angle A.

Coloring. The coloring system for the numbering on the trigo-
nometric scales is such that errors will be avoided. Angles are numbered
in black when the function designated is to be read on the C scale be-
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cause the C scale is black. Angles are numbered in red when the function
designated is to be read on the CI scale because the CI scale is red.
Hence black is used with black and red with red.

End Zone Designations and Scale Numbering. Scale designa-
tions are given in the left end zones in colors corresponding to the scale
numbering. For all of the trigonometric scales the order in which the
end designations are listed also corresponds to the placement of scale
numbers. For example, the lower scale (nearest to the C secale) is num-
bered entirely in black and its black end zone designation reads Cos S.
The term Cos appears first, at the left of the end zone, because when
reading cosines the angles in degrees appear to the left of the division
marks along the scale, for increasing angles the eye traveling from right
to left. Conversely when reading sines, for increasing angles the eye
travels from left to right, the angles appearing to the right of the division
marks along the scale. Therefore the S appears at the right of the end
zone.

The tangent (upper) scale on the slide is designated by two capital
T’s, the first being red, the second black. The black end designation T
and the black scale numbering from left to right indicate that tangents
of angles ranging up to 45 degrees are to be read directly opposite on
the black C scale. The red T and red numbering from right to left, for
angles greater than 45 degrees, indicate that in this range tangents are
read on the red CI scale.

The above relationships repeat for the middle scale designated
Sec T ST, the Sec T appearing in red for angles near 90 degrees, and
whose secant and tangent functions are determined from the CI scale.
The ST appears in black, for small angles whose sine and tangent func-
tions are to be read on the black C scale.

Decimal Point Location. The sine varies from 0.10 to 1.0 for angles
varying from 5.74 to 90 degrees, whereas the cosine varies from 1.0 to
0.10 for angles varying from 0 to 84:3 degrees. Therefore all sine and
cosine functions for angles listed on the Cos S scale vary from 0.10 to 1.0.

The tangent varies from 0.10 to 1.0 for angles ranging from 3.71 to
45 degrees. Therefore for angles shown in black on the T scale, tangents
read on C vary from 0.10 to 1.0. However, since tangents vary from
1.0 to 10.0 for angles between 45 and 84.29 degrees, the tangent read
on CI for angles shown in red, must vary from 1.0 to 10.0.

Sines and tangents vary from 0.01 to 0.10 for angles between 0.57
and 5.73 degrees. Therefore sines or tangents of angles shown in black
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on ST vary from 0.01 to 0.10. However, tangents and secants vary
from 10 to 100 for angles between 84.3 and 89.43 degrees. Therefore,
for angles in this range, shown in red on the Sec T scale, the secant or
the tangent varies from 10 to 100.

EXERCISES

Determine the following natural functions by use of the slide rule
seades:
125. sin 76°.
126. sin 54° 30’ (Convert to 54.5°).
127. sin 15° 24’ (Convert to 15.4°).
128. sin 0° 54’ (Convert to 0.9°).
129.sin 3° 51’ 36" (Convert to 3.86°).
130. cos 34.5°.
131. cos 74.7°.
132. cos 83° 30".
133. tan 15°42'.
134. tan 49° 18’.
135. tan 77° 30/,
136. tan 83.55°.
137. see 89° 187,
138. tan 88.4°.
139. tan 2° 24/,

EXAMPLES IN THE USE OF THE TRIGONOMETRIC SCALES

In the right triangle of Fig. 12 two sides are given. Procedures for

determiming angles A and B and the length of side ¢ follow:

2
B Tan A = 4—2 = 0.542 from a separate

operation using C and D scales. Next
c set the hairline to 0.542 on C and read
26 A = 28.4° at the hairline on T. Tan
- B = %g = 1.845 from a separate opera-
Fig. 12. tion using DF and CF scales. Next set
the hairline to 1.845 on CI and read

B = 61.6° at the hairline on T.
The above method is cumbersome and involves unnecessary work. A
hetter procedure is as follows: set, the right index of C at 48 on D; move
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the hairline to 26 on D (0.542 now appears on C at the hairline); read
A = 28.4° at the hairline on T. Angle B is determined directly as 61.6°,
the complement of A.

The length ¢ may also be determined as the hypotenuse of the triangle
whose two other sides are known, by taking the square root of the sums
of squares of the two known sides. A quicker method, however, is to

.2 o - 54.6'. To
sin !

obtain this result, leaving the hairline at 26 on D, move 28.4° on S to
the hairline; read 54.6" on D at the right index of C.

In Fig. 13 angles A and C and side “a”’
are given in the obtuse triangle. Angle B
and lengths b and ¢ are to be determined.
Angle B = 180° — 30° — 46° = 104°.
Sin B = sin (180° — B) = sin 76°. Using
the law of sines we may write the propor-

b c
snA sinB sinC

41 b e
sin 30° sin 76°  sin 46°
of proportion, previously explained in Chapter 3, to evaluate b and c.
Setting the hairline to 41’ on D, we move 30° on S to the hairline. We
now move the hairline to 76° on S, reading b = 79.5’ at the hairline on D.
Moving the hairline to 46° on S, we read ¢ = 59.0" at the hairline on D.

In Fig. 14 the three sides a, b, and
¢ are given. The angles are to be
determined. Making use of the law
—a? 4+ b2 + ¢ _

divide 26’ by the sine of the opposite angle. Thus

tion , or in our

We may now make use of the principle

case

of cosines, cos A =

2be
— 400 + 900 1 964 = 14(%4 Set the right
2(30)31.05 1863 . . y
index of C to 1863 on D; move the b-30°
hairline to 1464 on D; read A = 38.2° Fig. 14,

at the hairline on the Cos scale. Also
a?+ ¢’ —bF 400 + 964 — 900 _
9ac . 2(20031.05

%. To determine angle B we now set the left index of C to 1242 on D;
move the hairline to 464 on D, and read B = 68.1° at the hairline on

the Cos scale. Angle C is determined as 180° — A — B = 73.7°.

by the law of cosines, Cos B =
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EXERCISE

Determine angles A and B and
length c.

@ 30’ A

41 A Determine lengths a and c.
8
Fig. 16.
8

142, 33 - Determine angles A, B, and C.

A =5 c

Fig. 17.

Combined Operations. Calculations involving products and quo-
tients of trigonometric functions may be performed by using the trigo-
nometric scales without actually reading the functions from the C or
CI scales. It is only necessary to remember to use any scale as a C scale
when the angles are numbered black and as a CI scale when the angles
are numbered red. Examples of this type of computation follow:

9.2 sin 43° cos 70.46° = 2.10

Operations

Set right index of C at 9.2 on D.
Move hairline to 43° on S.

Set right index of C to hairline.
Set hairline to 70.46° on Cos.
Read 2.10 on D at hairline.
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10.1 tan 18.5° tan 48° = 3.75
Operations

Set left index of C at 10.1 on D.
Move hairline to 18.5° on T.

Move 48° on T to hairline.

Read 3.75 on D at right index of C.

12.8 tan 19° sin 47°
cos 25° tan 32°

Operations

Set left index of C at 12.8 on D.
Move hairline to 19° on T.

Set right index of C to hairline.
Move hairline to 47° on S.

Move 25° on Cos to hairline.

Set right index of C to hairline.
Move 32° on T to hairline.

Read 5.69 on D at right index of C.

= 5.69

Vector Components and Complex Numbers. A vector is a
quantity having both magnitude and direction. In Fig. 18 a vector R
is shown having a magnitude represented v A
by its length and a direction ©, which is
the angle between the vector and the
x-axis. The vector component x, in the 6 i "
x-direction, is equal to R cos 8; the com- ° Fig. 18.
ponent y, in the y-direction, is equal to
R sin ©. These components may be determined by use of the sine and
cosine scales. For example, let R = 8 and © = 27°. We set the right
index of C at 8 on the D scale. Moving the hairline to 27° on Cos,
we read x = 7.13 at the hairline on D. Moving the hairline to 27° on §,
we read y = 3.63 at the hairline on D.

From the theory of complex numbers, in which j = /—1, it may be
shown that e#® = cos © + j sin 6. Multiplying both sides by R we ob-
tain R-e® = R cos ©® 4+ j R sin 8. Here the complex number R-e# con-
sists of two parts, R cos O being the real part, j R sin 6 being the imagi-
nary part. The number may be represented graphically in Fig. 18 by
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the point A whose ecoordinates are x and y. In the figure the x coordinate
represents the real part and the y coordinate the purely imaginary part.
The y-axis for the imaginary part is perpendicular to the x-axis for the
real part of the complex number.

The above expression may be simplified by noting that R cos 0 = x
and R sin O = y. Then R-¢® = x + j y. The x and y values are deter-
mined as vector components of R as previously explained. This operation
is ealled changing from exponential form to component form.

In case the complex number is expressed in component form, with x
and y given, it may be changed into the exponential form if desired.
The relationships are easily seen from Fig. 18. y/x = tan 6 and
R = .\'il)l, o As an example, consider the complex number 7.2 4 j 4.5 =
R-e® in which R and angle 0 are to be determined ;

tan 0 = y/x = 4.5/7.2

Set right index of C 10 7.2 on D.
Move hairline to 4.5 on D,
Read O = 32° on T at hairline.

R = y/sin O = y/sin 32°

Leaving hairline at 4.5 on D.
Move 32° on S to hairline.
Read R = 8.49 on D at right index of C.

We now have as the result 7.2 + j 4.5 = 8.49 i3,

EXERCISES

143. Determine the x and y components of the vector R = 16.8 if
0 = 54°,

144. Solve for x and y in the cquation 21 e® =x + j y, if 6 = 27°.

145. Change the complex number 14 + j 8.9 to exponential form.

Angles in Radians. Angles in radians may be converted to angles in
degrees by use of a multiplication factor. Since one radian is equal to
180
S
by 57.3. For convenicnee, a mark designated r has been placed at this
point on the C and D scales on one face of the rule. For example, to

= 57.3° approximately, the angle in radians must be multiplied
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convert 1.71 radians to degrees, set the left index of C at 1.71 on D;
move the hairline to r on C; read 98° on D at the hairline. To convert
14.9° to radians, set the hairline at 14.9 on D; move r on C to hairline;
read 0.260 radians on D at the right index of C.

Operations Involving Very Small Angles. It will be remembered
that for very small angles the sine function, tangent function, and the
angle in radians are very nearly equal. Thus within the limits of slide
rule accuracy these three functions for very small angles may be used
interchangeably. Since angles are quite often expressed in degrees,
minutes, and seconds, a special mark (a single dot) is provided on the
ST scale for the conversion of minutes to radians. One minute is equal to
1—5672?‘)0—) radians which is approximately 3-1137 radians. The conversion
mark therefore appears on the ST scale approximately at 3440 on the
C scale. Its use may be illustrated by the following example: to de-
termine the angle in radians or the sine or tangent function of 0° — 49.2,
set the hairline at 49.2 on D; move the minute mark on ST to the hair-
line; read 0.0143 on D at the left index of C. Hence 0.0143 is the angle
in radians or we may say that the sine or the tangent of 0° — 49.2" is
equal to 0.0143.

An additional mark is provided on the ST scale for the conversion
of angles in seconds to radians, or for obtaining the sine or tangent
of such angles. This consists of a double dot. One second is equal to

T 1
180(60)60 — 206,240
for seconds appears opposite approximately 206,000 on the C scale. It
is of use In operations such as determining the sine or tangent of 0° —
0’ — 29”. Setting the hairline at 29 on D, we move the seconds mark on
ST to the hairline, reading 0.0001406 on D at the left index of C.

radians, approximately. Thus the conversion mark



Chapter 7

APPLICATIONS TO CIVIL ENGINEERING
by E. I. FIESENHEISER, B.S., M.S., C.E.

Purpose. The purpose of this chapter is to illustrate some of the
many applications of the slide rule to civil engineering problems. (Other
chapters illustrating other fields of engineering follow.) No attempt is
made to cover the entire field of civil engineering since to do so would
require many volumes. Only a few typical problems from various
branches of this field are discussed. Equations, where used, are given
without derivation.

Accuracy. The slide rule is always useful for checking even though
its accuracy is not always sufficient for a particular problem solution.
In calculating dimensions and long lengths with precision it is often
necessary to resort to the use of five or seven place logarithms, or to
extensive tables of natural functions for use with a mechanical caleulator.
This is particularly true in surveying problems. In such cases errors
may sometimes be discovered by approximate slide rule checking of a
precisely caleulated result. In the ficld of stress analysis or design the
accuracy of the slide rule is ordinarily sufficient.

SURVEYING PROBLEMS

Earthwork Quantities. The slide rule is useful in caleulating the
amount of earthwork to be moved for the construction of a highway.
"The contour of the ground is determined by leveling along the proposed
line of the road and the arca of the cross sections perpendicular to this
line are caleulated at various stations along the road. V, the volume of
carth to be moved, may then be determined by either of two methods.
The first method is called the “average end area” method in which
V = 3(A; + As)L, where A, and A, are cross sectional areas and L is
the distance between them. For example: A, is calculated as 162 (ft.)?
and A, as 184 (ft.)?, with the distance L between the scctions 54 ft.
Vo= 3(162 + 184)54 = 173(54) = 9,340(ft.)? by slide rule.

46
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While the above method is simple, it is not exact. When greater pre-
cision is desired the ‘“prismoidal” formula is used. This method involves
an additional area A, the area of a cross section half-way between A,
and A, By the prismiodal formula V = (A, + 4A. + A.)L. For ex-
ample, for A; = 500(ft.)?, A,, = 684(ft.),2A, = 896(ft.)?, and L. = 92 ft.:

= 3(500 + 2736 + 896)92 = 1(3,312)92 = 48,000(ft.)? by slide rule.

Exercise 146. Calculate the volume of earthwork to be moved be-
tween two stations 73.4 ft. apart if A; = 124 (ft.)?, A, = 136 (ft.)?,
and A; = 154 (ft.)%. (a) By the average end area method; (b) by the
“prismoidal’”’ formula.

Taping. When measuring distances by tape in the field, many times
it is necessary to measure along a slope in hilly country, although the
horizontal distance is desired. It is then necessary to correct the slope
measurement. This may be done if the angle of slope is determined by
use of a transit. If S is the slope measurement or taped distance, h the
horizontal length and A the angle of slope, then h = S-cos A. For ex-
ample if S = 100 ft. and A = 15°: h = 100 cos 15° = 96.6 ft. by slide
rule.

A common source of error is the use of a tape too long or too short.
However, if the tape being used is compared with a standard and the
error in its length determined, a correction may be made. For example,
in measuring a line by use of a 100 ft. tape the measured distance was
864.91 ft. The tape was found to be 0.14 ft. too long. The correction is
8(1333)1(0.14) = 1.21 ft. by slide rule. This error of 1.21 ft. must be
added to 864.91 ft. to give the correct length as 866.12 ft. (Had the
tape been 0.14 ft. too short, the correction would have been subtracted.)

Exercise 147. A distance measured by a 50 ft. steel tape was found
to be 484.15 it. If the tape used was actually 0.028 ft. too short, what
is the true length of the line?

Latitudes and Departures. In locating a point with reference to a
previously located point from field survey data, the method of latitudes
and departures is often used. The latitude is defined as the component
of a given distance in the north-south direction whereas the departure
is the component in the east-west direction. The bearing of a line is the
angle betweew the line and the true north,
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) LAT. DEP.
Line| Dist. | Bearing -
NS E W
AB | 165 N, 26°E. 1510 73.6¢
BC | 100 [S. 79° E. 19.17 | 98.1"
Col 9718 s B 80.5 | 543"

DA 51.4' N. 226.0" 1.

Fig. 19 represents a plot of a field traverse made by taping distances
AB, BC, and CD. At each point a bearing was taken. These and the
taped distances are recorded in the table. The line AD was not measured
in the field. Nevertheless its length and bearing are desired.

It may be scen from the figure that the latitude of each distance is
the length multiplied by the cosine of the bearing angle and the de-
parture is the length multiplicd by the sine of the bearing. The necessary
multiplications, performed by slide rule, are set down in the appropriate
columns of the table. After summing the distances we observe that
point D is 51.4" north and 226.0" east of A. Length DA is therefore
V(51.4)2 + (226.0) = 231.8". Angle O in the figure is then arc sin

2%]{% = 12.8° or 12°—48'. The same angle may be determined from the

. . 51.4 . . .
relationship ® = arc tan 596 which also yields 12.8°. The bearing of

point A from point D is then 90° — © and since A is south and west of D,
the bearing is designated S. 77° — 12 W. The same calculations, per-
formed with 5-place logarithmic tables,
A 50" 8 result in a bearing of S. 77° — 09’ —
54" W. and a length DA = 231.84". Line

\ U
\ 55°30'- 5.
\\\ \> DA represents the closing line of the
c

traverse. It 1s obvious that the slide

\ NP rule calculations provide an accurate
Y / 582 check.
\D Exercise 148. Solve for the length of
. the closing line DA in the traverse shown
Fig. 20.

in Fig. 20. Caleulate its bearing.

Inaccessible Distances. In running a survey line obstacles may
occur on the line of sight or it may be impossible to measure certain
lengths such as the distance across a river. In such cases it is necessary
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to extend the line by indirect methods. Fig. 21. illustrajces a n_lethod t_"o;
an obstacle by use of angular deflections. Point B is a poin

OBSTACLE ‘&

Fig. 21.

passing

SURVEY UNE A

isi The procedure then is to measure distance AB and the
Z;S;l);e(;r%[l?etngle atl,) B is then taken as 2 © and the lengtb ‘BC as ;%12‘1;
to AB. By sighting along BC point C may be locatec’l. D(l;t:én(f o
then 2(AB) cos ©. For example if AB measures 94’ an = 21.8°%
then AC = 2(94') cos 21.8° = 174.6'.
Exercise 149. If, in passing an obstacle, the deflection angle moasux:e:
by transit at A was 37° and the taped distance AB was 86 {t., determin

the length AC.

method for extending a survey line across a river

Fig. 22 illustrates a s visible

when it is not practical to measure directly across. Point C i
from either A or B.

SURVEY LINE

Fig. 22.

the use of a transit and distance
e. The angle at C will then be

AC sinB
180° — A — B. Then by the law of sines AB =~ sn O el
A =73 — 18, B = 101° and AB = 54’, then C = 180° — 73.3° —

AC  sin 101°  cos 11° hich AC = 531’ by slide
101° =87 537 = Gn 57 ~sm 7o O

Angles at A and B are measured by
AB is accurately measured by tap !
For example if
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rule, using the proportion principle previously explained. A caleulation
using 5-place logarithmic tables yields AC = 533.7".

Exercise 150. Referring to Fig. 22, determine the distance AC
across a river if AB = 75 ft. and angles at A and B are 47° and 115°
respectively,

Stadia Calculations. A stadia transit is an instrument for determin-
ing horizontal and vertical distances from the observer to a point by
taking readings on a rod heid vertically at the point. By this method it
Is unnccessary to tape the distance from the observer to the point. The
transit telescope is provided with an upper, lower, and a middle hori-
zontal cross hair. The upper and lower cross hairs are equidistant from
the middle cross hair which represents the line of sight of the telescope.
A special stadia rod is held at the point to be located and the transit is
focused on this rod. Rod readings are taken at the upper and lower cross
hairs and the rod length between these points, called the rod intercept r,
is determined. Also the vertical angle ©, between the line of sight and
the horizontal, is read at the transit.

The horizontal distance H from the observer to the point is then cal-
culated by the equation H = a cos 6 + kr cos?0, in which a and k are
instrumental constants, known for any particular transit. The vertical
distance from the telescope to the middle cross hair is V = a sin9 +
zkr sin 20. For example, suppose the upper and lower cross hair read-
mgs to be 4.32” and 1.14' respectively, with a vertical angle 6 = 26°.
The rod intercept r = 4.32’ — 1.14’ = 3.18’. Assume instrumental con-
stants a and k to be 1’ and 100 respectively. Then H = 1 - cos 26° +
100(3.18) cos? 26° = 0.9" + 257 = 258’ approx. V = 1 - sin 26° 4 1(100).
3.18 sin 52° = 0.4’ + 125.1 = 125.5’. This is the difference in elevation
between the transit telescope and the center of the rod intercept. Ordi-
narily stadia distance calculations are made only to the nearest foot,
for which the slide rule provides ample accuracy.

Exercise 151. If the instrumental constants a and k are 1’ and 100
respectively, determine the vertical and horizontal distances V and H
from the following stadia readings:

Vertical Angle © Rod Intercept
(a) 10°—15 5.42 ft.
(b) 7°-30' 2.14 ft.
(c) 19°—45’ 4.25 ft.
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Radius and Degree of Curve of a Curved Track. In railroad track
surveying it is possible to calculate the radius and the degree of curve
from measured lengths of a straight chord C and the mid-ordinate M.

S

_C 44
- 8M

14
D= 571:;0 (approx.) and

. H0
macn D =2 arc sin R (cxact).,

. C
Fig. 23. I = 2aresin SR

In Fig. 23 formulas for calculating the radius R and degree of curve D
are given. The degree of curve is the central angle subtended by a 100"

chord. As an example, suppose the distance C to be 300" and at 150" from
.. 90,000 + 18.5
A the ordinate M is found to be 2.15". The radius is then — s =

) 5730 o o
5230’ approx. and the degree of curve is D = 55307 = 1.095° = 1° —

. 300 o e
5.7'. The central angle I = 2 arc sin 10,460 = 2(1.644°) = 3.288°,

Exercise 162. Determine the radius R, degree of curve D, and central
angle I for the following values of the chord C and the mid-ordinate M:

C M

(a) 208 ft. 6.4 ft.
(b) 147 ft. 5.65 ft.
(c) 61.5 ft. 1.27 ft.

STRUCTURAL DRAFTING

Lengths and Bevels. The structural steel draftsman is concerned
mainly with the calculation of the lengths of members and the details
of their connections to other members in the structure. These lengths
and details are shown on drawings which are used in the shop for fabri-
cation of the various members. Many times it is necessary for members
to be skewed and to connect to other members at an angle. The skew
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of a connection is ordinarily indicated on the drawing by a bevel which
is a figure caleulated to the nearest 1 of an inch for the distance per-
pendicular to a base line 127 long. Thus in Fig. 24 the distance R is
known as the bevel.

61" 47
] Il 19°-1° | . N
—Hie_
B8
68 6-8 68

20'-0

2"

82
B3
B84
BS
6

A

BEVEL

H B6 ‘ H

20-0

Fig. 24.

Fig. 24 represents a floor plan in which columns and beams are shown.
The beams are indicated by heavy lines and are marked Bl to B6
inclusive. Due to the skew of beam B1 it will be necessary to caleulate
the lengths of B1, B3, and B4 and the bevel due to the skew. Beam Bl
will be connected at the mid point of the flanges of columns C and D.
All distances must be figured to the nearest 14”.

The bevel can be calculated or checked by slide rule, using the prin-
ciple of proportion. Column D is 4’ —0 south of column C and its flange
face is 19'—1" or 229” east of that of column C. The bevel R is found
as follows:

R _4-0 4%
127 7 19 — 1 2297
R = 21"

The length of Bl will be 1/(229)F + (48) = /52,500 + 2,300 =
/54,800 = 234" = 19’ — 6”. The R1 and R2 scales were used for de-
termining the squares and the square root of their sum.
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The length of B4 will be greater than 16’ —0. The increase in length will
. . D’ 48"
be termed D’ and will be determined by the proportion =30 = 5%;
D 48" R 1 agr s
OF Ze 17 = 2997 from which D’ = 15.73" or 1’ — 32" by proportion. Then
the length of B4 will be 16'—0 + 1'—3%" = 17'—3%".
The proportion for determining the increased length of B3 will be

D’ 48” DI 48” : » ’ L4
m’ = Worm = W,fromwhlchD'=32.5 or2 -87} .

Hence the length of B3 is 16'— 0 + 2'— 83" = 18’— 81",

Exercise 1563. Determine the lengths C and bevels R for values A
and B given below:

A A B
@ +-5t 2-8
R < 8 (b) 8&-73 77
() 14'-~9 4 -9
2°
Fig. 26.

The Miter Joint. A miter joint is one in which intersecting members
meet on a common line of contact. In detailing the top chord members
of a bridge truss, and in other cases, it is important to know the angle
or bevel of the line of intersection. Fig. 26 indicates the manner in which
this angle, designated ¢, may be determined. The depths d, and d, and
angles of slope 0, and 6, are known for the intersecting members. The

G,

LINE OF
CONTACT
d; cos 6, — dy cos o

dz Sin 07 — d1 sin 02

Tan ¢ =

Fig. 26.

tangent of angle ¢ may be determined from the formula. As an example:
d, = 123", d, = 12", 6, = 48° and 0, = 9°— 30'— 45" or 9.51°. Then
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12.75 cos 0.51° — 12.5 cos 48°  12.58 — 8.36  4.22
12.5 sin 48° — 12.75 s 9.51° ~ 098 —2.10 — 7.18 — 0-988.
¢ = arc tan (0.588 = 30.4°.

The bevel R = 12 tan ¢ = 7.06” or 7}4". This bevel, calculated by
slide rule, was also caleulated by 5-place logarithmic tables. Both
methods give the saume result to the nearest 15",

tan ¢ =

Exercise 154. Determine the bevel R for miter joints having the
following properties:

0, 0, K d.
(@) 40° 11° 14* 12"
(b) 49° 8 11}r gy
() 52° 00 T 7

STRUCTURAL ANALYSIS

The Truss. In the stress analysis of structural members it is necessary
to work constantly with the applied forces. A force, being a vector
quantity having both magnitude and direction, may be resolved into
compounents (as in Chapter 6). If convenient, the components may be used
separately. As an example, Fig. 24 (a) shows a force of 250# acting on
a two member truss. The forces in members A and B are to be deter-

250°
L 192%:250% cos 40°
l l
B A cos 20"
(o] —— ——— e )

e — 161% < 250" sin 40°

TRUSS

A sin 20°
{a) {b)
Fig. 27.

mined. For convenience the force A and the applied 2504 force are
resolved into their horizontal and vertical components. Force B is hori-
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zontal and has no vertical component. All forces and components acting
at point 0 are shown in Fig. 24 (b).

To maintain equilibrium the sum of vertical forces must be zero and
the sum of horizontal forces must also be zero. Hence from Fig. 27 (b),

)

192 — A sin 20° =0, from which A = -S%a = 362=. Alxo B —
A cos 20° — 161 = 0, from which B = 161 4 562 co= 20° = 161 +
527 = 688#. All of the operations are performed using the Co~ 3 zcules.

Exercise 1566. Calculate the stresses in the memberx of trus=e~ shown
below in figures 28 (a) and (b). Indicate whether the stresses culeulated
represent tension or compression.

A
407
8
z500" 4500" 5400  7800%
4016 =64
I i
{a) (b)

Fig. 28 (a). Fig. 28 (b).

A Steel Beam. In determining the stresses in a beam it is necessary
to determine the forces acting, the shear, and the bending moment.
The internal stresses in the material are then determined from the
theory of the strength of materials. As an example, Fig. 29 illustrates
a steel beam designed to carry a concentrated load of 8,800# on a
span of 11"

8800
< 7 8WF17
! J S = 14.1 (in.)®
ol . = jo Aw = 1.84 (in.)?
{
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Its seetion modulus S and web area Aw are given for use in determining
the moment and shear stresses in the material,
The left reaction force R may be determined by proportion, utilizing
r
the distances from point 0 at the right end of the span. 8—?—0(—) = ~17—1,, from
b
which R = 5,600#. This force is the shear acting at the left of the load.
It will be resisted primarily by the web area. Hence the shearing unit
X
stress 1S3
The moment under the 8800# load will be the product R X 4’ =
5,600(1) = 22,400'#. The unit stress due to this bending moment will be
22,100(12)
ol
Stress analysis problems having to do with steel beams are many and
varted. The above example is intended to serve merely as an illustration
of this type of caleulation to which the slide rule is well adapted.

= 3,0504 per sq. in.

= 19,000# per sq. in.

Exercise 156. Solve for the end reactions Ri and Ry and for the
moment in the beam at cach load point. Calculate the maximum bend-
ing stress for the loads shown if the section modulus of the beam is
107.8 (in.)%.

6,400* 7500° 9800* 7,900* 2160°

6’

R, r 26’ Ra

|

Fig. 30.

A Reinforced Concrete Beam. For a simple concrete beam, rein-
forced by steel to resist tension, it is necessary to determine the location
of the ncutral axis of the cross section before the bending moment
stresses can be determined. The strength of the concrete in tension is
ignored. In Fig. 31 the cross section of a beam is shown, for which the
concrete compressive unit stress f. and unit stress in the steel f, are to
be determined when the moment is 440,000"#.
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Fig. 31.

The effective area of steel is equivalent to n times its actual area.
where n is the modular ratio, assumed equal to 10 in this case. The
effective steel area is therefore 2 X 10 = 20 sq. in. The neutral axis
may be located by equating the moments of effective tensile and com-

X
pressive areas about this line. Thus 8X (§> = 20(16 — X) or X* +
5X — 80 = 0. This is a quadratic equation which may be solved for X

by the factoring method previously described in Chapter 3. Setting
the right index of the C scale at 80 on D, the hairline is moved to
6.78 on CI where the simultaneous hairline reading on D is 11.78, the
difference of these two readings being 5. The neutral axis i= therefore
located at X = 6.78". The lever arm between the forces C and T is
16 — 3= 13.74”, and the moment is either C or T times this lever arm.
8(6.78 .
Hence ( 5 )-fc-(13.74) = 440,000 and f, = 1,180# per sq. in. From

the equation 2f,(13.74) = 440,000, f, = 16,000# per sq. in.

Exercise 1567. A concrete beam 12% in. wide, with an effective depth
d of 27 in., is reinforced by four 1-inch dia. rods. If the value of n is 10.
locate the neutral axis and determine f. and f; for a bending moment of
1,500,000 in. lb.

A Filled Arch. Arches are frequently used to carry loads over long
spans. They are economical structures provided the end supports are
capable of withstanding the thrusts transmitted by the arch rib and
provided the curve of the arch axis is properly designed. A well designed
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arch curve will be such that the applied loads produce primarily forces
or thrusts, with little or no bending moment.

l'l'l'I'l'l‘T'l’l'lH"T'l‘l'l'
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Fig. 32.

In Fig. 32 the primary load to be carried consists of an earth fill. The
weight of this fill is termed w 1b. per cubic foot. In order to carry this
load without introdueing bending moment the arch axis curve must be

determined by the equation y = h (cosh \/H‘!(x) — 1), where H is the
horizontal component of the thrust to be resisted by a section of arch

h
rib one foot in width. If the ratio of depths of fill is g = _:_f, then

H = wl.? .
4[Log.(g + Vi — 1)
The angle of slope ¢, at the end of the arch, may be determined from
. . L .

the expression tan ¢ = 11\/%-smh (—2\/%) Then the vertical com-

H
cos ¢

As an example for slide rule computation the following data will be
used: I = 200°, w = 120 Ib. per cu. ft., r = 40’ and h = 10’. g is then

ponent of thrust V = I, tan ¢ and the maximum thrust T =

_10+40 _ — 5 ond H 120(200)2 _ 1,200,000
10 T 4-[Log. 5+ VAP~ (Log.9.9)2 ~
1,200,000
agi = 228,000 1b.
120 200 [ 120 .
Tan 6 = 10‘/58?,6@ . ( 598 000) = 0.2294 sinh (2.294).
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Since sinh (2.294) = (e — e22%), tan ¢ = 0.2294.3(9.900 —
0.101) = 1.124, from which the angle ¢ = 48.4°.

H
V =H tan ¢ = 256,500 1b. and T = cos @

The equation locating the arch axis will be y = lO(co:.h TENT 1).

= 343,000 Ib.

By substituting values of x equal to any horizontal distunce from the
center line, the corresponding ordinate y may be determined. lor ex-
ample, at the quarter point of the span, x = 50’. At this point y =

10(cosh 4306 ) = 10[3 (e + e1147) — 1] = 10[3(3.145 + 0.318) —

1] = 10(1.731 — 1) = 7.31". '
For structures of this type the log log scales are very useful in evalu-
ating logarithms and hyperbolic functions.

Exercise 1568. Determine the economical curve equation for a 300 ft.-
span filled arch if the depth of fill h is 6 ft. at the center and the rise r
is 50 ft. If the fill weighs 120#/cu. ft. determine the forces 11, V, and T
for a one-foot width of arch rib.

A Gravity Dam. Gravity dams are structures in which the weight
of the dam itself is utilized to balance the pressure of water and 1o pre-
vent overturning. In ealculating the pressures on the base and in in-
vestigating the stability of such structures, the weight of cach part of
the dam is calculated separately. Then the moment of all forces about
a common point is determined and the resultant force acting on the
base of the dam is located.

l-.-
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In Fig. 33 (a) a simple dam is shown which is to retain a 30" head of
water weighing 62.4 Ih. per eu. ft. For analysis a width of dam of one
foot, perpendicular to the figure, is used. The dam is to be constructed
of conerete assumed to weigh 145 1. per cu. ft. Fig. 33 (b) indicates the
separate forces and their locations. Distance x, locating the resultant
vertieal component P, is to be determined.

The \.\':Lt,ur pressure acts horizontally and at the bottom of the dam
has an intensity of 62.4(30") = 1,872 Ib. per foot. The total force due
to waler pressure is the area of the force triangle and is termed F,.
\ B0
F = '5(],513) = 28,100 Ib. The forces F; and F; are due to the weight
of concrete, Ty being equal to 145(4)32 = 18,600 1b. and F, being
TIS(11.5)32

-, = 33,600 Ib. The moment of forces F,, Fy, and Fy about

point 0 is balanced by the moment P-x, shown in Fig. 33 (b). Therefore
(138,600 + 33,600) x = 28,100(10) + 18,600(2) + 33,600(8.83).

615,000 )
= “5aagp = 1178

The eccentricity e, measured from the center line of the base, is then
TEYS" — 9.25" = 2.53". Pressures py and p; indicated in Fig. 33 (c) may
determined  from  the equations p;, = 1—)(1 - @)

L L
52,200 1 6(2.53)
s\ T8 ) = 2,820(1 — 0.821) = 506 1b. per sq. ft.; and

now be

18.5
P Goe

P = 1+ -L—> = 2,820(1 + 0.821) = 5,1401b. per sq. ft. The resultant

13 located within the base, since x < 18.5’, which indicates that the
dam is stable and will not overturn.

'Exgrcise 1§9. Determine the base pressures p; and p, for a dam 30 ft.
high if the w‘u!lh 15 3 ft. at the top and 14 ft. at the bottom. The depth
of water retained is to be 24 ft. and the weight of masonry is 145#/cu. ft.

e s ——iﬂ
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Chapter 8

APPLICATIONS TO MECHANICAL ENGINEERING
by R. A. BUDENHOLZER, B.S,, M.S., Ph.D.

¥

INTRODUCTION

The subject of mechanical engineering is so diversified that it would
be quite impossible to cover even a small portion of the many types of
problems which may readily be solved with the aid of the slide rule.
Although many of these problems are simple and require only the use
of the basic scales designed for multiplication and division, there are
others which require considerable skill in the use of the more compli-
cated scales. It is the purpose of this chapter to acquaint the student
with some of the latter and to illustrate their solution with the Post
Versalog Slide Rule.

There are several fields of mechanical engineering in which an abun-
dance of problems exist whose solutions are particularly suited to the
slide rule. Of these, perhaps the most important are thermodynamics,
heat transfer, and machine design. In this chapter, each of these branches
will be treated separately, and a few representative examples, together
with their solutions, will be included. The treatment assumes that the
student already possesses a basic knowledge of the use of all scules,
and that he is familiar with the technique of setting decimal points and
of performing other commonly employed operations. In studying the
illustrative examples, the student is urged to follow the operations
listed, and at each step to call to mind the reason why the particular
operation was employed, and why it accomplishes its objective. In
this way, a more basic understanding of the rule will gradually be
achieved, leading soon to a complete mastery of its operation.

THERMODYNAMICS

The science of thermodynamics is related to the behavior of gases,
liquids, and solids when under the influence of the interchange of heat
and mechanical energy. A large number of problems in which the use
of the log-log scales are particularly valuable are those involving the
behavior of perfect gases undergoing changes in state. The derivation

61
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of the equations expressing the various relationships existing between
such properties as pressure, absolute temperature, volume, internal

= e les W oy -
?gl ;“ fi E*é;—‘ H_g m; . Bé‘a& energy, enthalpy, and entropy can be found in any stz.mdard textbogk
SR E & & I e a on thermodynamics. These equations are usually derived for certain
- i . :, 5 b + commonly” employed processes such as constant volume, constant
o = o = i = § pressure, isothermal, isentx:opic, and polytropic. In table I are pre-
Efénf 2 L L - i ! 2 sented those equations which have been found to be most useful to
gﬁfm % % :‘2 g o5 the mechanical engineer. The nqmenclature employed is expressed in
= # 4 £ gr 5% . engineering units. :
O —_ — gzrﬁég f A study of Table I shows that all equations listed fall into one or
TS L | 0 | 5 N :§’§§§ 5825 more of the following three categories: equations involving powers of
@ EE‘JE | € € © 3 e T E-‘z numbers; equations involving the natural 'logz?nthms of numbers;
% CE { £ g z g gzgtg _§;’;§g;§’ equations involving simple multiplication or division. . .
& Ty T | = ﬁ?ff';j? f Of these, only the first two are sufficiently difficult to require special
Lj: g J - P = i REEBED b treatment in this chapter.
ol =T = v 5
E ?;55 fl - (I - ; b' t:: a. Equations Involving Powers of Numbers
% i ’ A 7 = e Elz Solution of these equations is accomplished by the use of the log-log
- (E _ "“;" I s - scales, LL3 to LLO and LL/3 to LL/0. In many cascs, several alter-
2E0: e e et ‘ e native solutions of equal accuracy and speed will suggest themselves.
o B EES & o H—Q I e &2« At first, the student should employ more than one m?thod,.usmg the
g *f?, :? ' ] ; Sl | e s other as a check. After proficiency in all methods is a(‘hle\'('fd, the
- I L I F 3 student should be able to select for himself the one best suited to
%i f ! ‘ T T ﬁ.\ the particular circumstances.
= | = =1 N ~~ oa
g B J J ‘ £:|"s3 ’ : i? »\:3 'IL”', g Example 1. . .
ENE B f,_ﬂiv I T K] For a polytropic process, solvg for Py if n = 1.21, P, = 120 psia,
E 5 . ol 55 ; E and V, = 3.17V.. Answer 29.7 psia.
Elay | Al , ' | | Ged B I
B . = =le 5 &8 Solution:
S R D fa g i . P, 120
d 1 e ] e éé g B¢ From Table I write, P. = (Vl‘jn = 317
I 42 = ao | 2
= L I N I R Lt Set left index of C opposite 3.17 on LL3. Move hairline to 1.21 on C
E N e | £8 3 ffg;g and read 4.04 on LL3. Set 4.04 on C opposite 120 on D and read 29.7
;wiifi"gh I ° P 2¢ £ ;: 52 5 opposite right index of C.
- T s T o] 88§ ssEk
:f |z §;§ 5| EE | B3 §§ e ‘fff“:* Alternate Solution:
A g?; i é’@‘ﬁ gtf Ec}f =d 58 & mmaa vV, \» 1 \r2 _
Ot |Odia | F & SE Write, P, = P,(Vi) = 120<?ﬁ7> = 120 X 0.315"»
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Set hairline over 3.17 on LL3 and read its reciprocal 0.315 on LL/3.
Shide left index of C under hairline and move hairline to 1.21 on C. Read
0.247 on LL/3. This is 0.315'2, Set lelt index of C to 120 on D and
move hairline to 0.247 on C. Read 29.7 on D.

Example 2.
o . . .. P V.
For a polytropic process, find n if 5.1 = 7.23 and V.= 5.63.
Answer 1.145 ) l
Solution:
~ . P, Va\»
From Table I write, 3 = |+ ) or 7.23 = 5.63»
P, Vi

Set left index of C opposite 5.63 on LL3. Move hairline to 7.23 on LL3
and read n = 1.145 on C.

Alternate Solution:

An alternate, but much less rapid solution, may be obtained by using
natural logarithms. Write

log. 7.23 = n log. 5.63
or
n = log. 7.23
" log. 5.63

Find log.5.63 by setting hairline to 5.63 on LL3 and reading 1.73 on
D. Find log, 7.23 by setting hairline to 7.23 on LL3 and reading 1.98
on D. Slide 1.73 on C under hairline and read 1.145 on D opposite
left index of C.
The same result could have been obtained using common logarithms
and reading their values on the L scale. Thus
_ log,7.23  0.859

= Jozws.63 ~ 075 = 145

Example 3.

For & polytropie process find AE if T 0.94 and n = 1.037.

Vi Ty

Answer 5.30

Solution:

T, <Vz)n~l 1 (V2)o.oz1
T, = \V, Therefore 091 ~\V,
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The simplest solution is to find the number which, when raised to the
0.037 power will give 6%4_ Set hair line to 0.94 on LL/1 and read its

reciprocal 1.0637 on LL1. Slide 0.037 on C under the hairline and read
5.30 opposite left index of C on LL3. The choice of the correct LL
scale on which to read the answer is governed by the position of the
decimal point. In this case, since the decimal point is in the second
place to the left of 3.7, it is necessary to move upward two scales to the
LL3, in order to obtain the correct result.

’

Alternate Solution (Preferred):

b )™= )
v."\oo1) = \ows

Opposite 0.94 on LL/1 set right index of C. Move hairline to 27 on C
and read 5.30 on LL3. The first operation above was equivalent to
setting the right index of C opposite 1.0637 (the reciprocal of 0.94) on
D. The second operation raised 1.0637 to the 27 power. Again, the
choice of LL scale on which the answer is read is determined by the
position of the decimal point. In this case, it is clear that the unswer
would not be on the LL2 scale because this would give 1.1815, which
would be the answer had the exponent been 2.7 instead of 27.

Example 4.
Solve example 3 if n = 1.37. Answer 1.1815

Solution:

The solution in this case is identical with that of example 3 except
that the exponent by the first method becomes 0.37 instead of 0.037.
By the second method it becomes 2.7 instead of 27. The answer is
1.1815 instead of 5.30 and is read on LL2 instead of LL3.

Example 5.

Find the change in internal energy for air undergoing the following
isentropic compression. P; = 15 psia, P, = 60 psia, T, = 520 deg. R,
w = 13 Ibs, ¢, = 0.1715 btu/Ib F, k = 1.40.

Answer 564 btu.
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Solution:

k-1
From Table T write, U, — U, — we (T, — T) and Ty = Tl<§?>7
1

k-1
Then Us — Uy = wcv'l‘,[ P — 1] = 13 x 0.1715 X 520
P 6o\t
= 1.4 __
[(32)+ 1]

Set left index of C opposite 4 on LL3 and move hairline over 0.286 on
C. Read 1.486 on LL2 and subtract one from this, mentally obtaining
0.486. Set left index of C opposite 1160 on D and move hairline to
0.486 on C. Read 564 on D.

=1 1(‘)0[ 40286 1]

EXERCISES

Solve the following exercises, using alternate methods when feasible.

160. Find T, for an isentropic process for which T, = 560, P, = 14.7,
P, = 49.25, k = 1.40.

i61. Find P. for an isentropic process for which P, = 15, T, = 520,
T, = 360, k = 1.30

162. Tind P, for a polytropic process for which Py = 400, T, = 625,
T, = 500, n = 1.05.

163. Find nif 22 = 7.5 and 2 =

. Findni P 7.o‘de;—-4.4

164. Compute the heat added to 1 1b. of air which undergoes a poly-
tropic expansion with n = 1.16 from a pressure of 200 psia to
42 psia. The initial temperature is 900 deg. R. For air ¢, = 0.1715
btu/1b F and k = 1.40.

165. Find V. for a polytropic compression of a gasif n = 1.24, T, = 600,
Ty = 800 and V, = 16.

b. Equations Involving Natural Logarithms of Numbers.

Most thermodynamic equations involving logarithms can be reduced
to onc number multiplicd by the natural logarithm of another. The
solution of this type of problem is quite simple, since the natural log
of a number can be read directly on the D scale opposite the number
on one of the LL scales. If the number is greater than one, the logarithm
will be positive and will have the decimal point indicated by the symbol
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at the right of the scale. If the number is less than one, the logarithm
will be negative with the decimal point also indicated by the symbol.
The multiplication process which follows is one of simply setting the
left or right index of the C scale (whichever is appropriate) opposite
the vluae fo the logarithm on the D scale and moving the hairline to
the number by which the logarithm is to be multiplied. The final result
is read on the D scale and given the appropriate sign and decimal point.

In the interest of accuracy and ease of computation, it is often an
advantage to reduce the problem to its simplest form before perform-
ing the final operations. This will result in a minimum of effort in
obtaining the solution. Example 6 illustrates this point.

Example 6

Find the change in entropy per lb of gas resulting from a polytropic
expansion for which n = 1.32 if V; = 6V,. Assume ¢, = 0.18 btu. 1b F,
and k = 1.39. Answer 0.0226 btu/deg. R.

Solution:

Without reducing to its simplest form, the solution could be found
as follows:

— s = oz = o5 D)o (B) 7 -
Sz Sl = CnlOcp Tx = Cv l—n looe \.2 =

0,18(5‘9 - 1-32) logo(2)03 = — 0.0394 log, ()03

1-132

Set left index of C opposite 6 on LL3 and move hairline to 0.32 on
C. Read 0.5635 on LL/2. This is equal to # raised to the 0.32 power.
The logarithm of this is read under the hairline on the D scale, but
with a negative sign, since it is for a number less than one.

From the symbol at the right of LL/2, it is clear that the logarithm
read on D is —0.574. Set the right index of C under the hairline and
move hairline to —0.0394 on C. Read 0.0226 on D.

Alternate Solution:

By further mathematical manipulation, the solution can be reduced
to the following, which is the preferred method.

S, — 8, = —0.0394 log. ()73 = —0.32 X 0.0394log. ¢ = 0.0126log. 6
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Set left index of C opposite 6 on LLL3. Move hairline to 0.0126 on C
and read 0.0226 on D.

Example 7.

Find the work of an isothermal expansion of 7 lbs of hydrogen gas
from a volume of 500 ft* to 10,000 ft3, The temperature is 80 F (540
deg. R.) The gas constant for hydrogen is 772. Answer 11250 btu

Solution:
Referring to Table I and noting that P‘ —X—Q one may write
1
. \EJ{:F ) P, 7 X 712}( 540 V. 7 X 772 X 540
I\V?,— J ]()h Pl 77 — lOge*‘, = 778 IObe 20

Set 778 on C opposite 20 on LL3. Move hairline to 772 on C. Turn
rule over and move 540 on CI under hairline. Move hairline to 7 on
CT and read 11,250 on DF.

Example 8.

¥ind the change in entropy for a constant pressure process in which
4 lbs of air are compressed at constant pressure from a volume of
50 {t3 to 10 {t3. ¢, for air = 0.24 btu/lb F. Answer — 1.545 btu/deg. R.

Solution:
Noting from Table I that % = :ff: the following can be written
1 1
’lﬁ
S: — Si = we,, log. =4 X 0.24 log, — 10 = —4 X 0.24 log, 5

T, 50
Set 4 on CI opposite 5 on LL3. Move hairline to 0.24 on C and read
—~1.5450n D,

EXERCISES

166. Find the change in entropy per 1b of air resulting from a poly-
tropic cxpansion for which n =1.12 if V. = 18V,. Assume
¢, =0.1715 and k = 1.4,

167. Find the work of isothermal compression of 10 Ibs of nitrogen
from a volume of 36 ft3 to a volume of 4 ft3. The temperature
is 60F. Gas constant for nitrogen = 55.2.
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168. Find the heat added per Ib of air undergoing an isothermal
expansion from a pressure of 140 psia to 40 psia. The temperaturc
is 600 deg.R. R = 53.3

169. Find the change in entropy for a constant volume extraction of
1000 btu of heat from 15 Ibs of oxygen originally at 760 deg.R.
¢y for Oxygen = 0.155. btu/lb F.

170. For an isothermal compression the change in entropy of 3 lbs of
carbon dioxide is —0.37 btu/deg.R. If the initial pressure is 15
psia, what is the final pressure? R for carbon dioxide is 35.1
ft/deg.R.

HEAT TRANSFER

The mechanisms by which heat may be transferred are three, con-
duction, convection, and radiation. In this section each of these will
be treated separately for the case of steady flow. The case of transient
flow requires a high degree of mathematical training and is beyond
the scope of this chapter.

a. Conduction

Conduction may be defined as the flow of heat through a substance,
the particles of which remain in a fixed position relative to each other.
It is usually associated with the flow through solids although in the
absence of convection currents heat can also be said to flow by con-
duction through liquids and gases. The flow of heat by conduction is
directly proportional to a constant called the thermal conductivity
multiplied by the temperature gradient and the cross sectional area
perpendicular to flow, and inversely proportional to the distance through
which it flows.

For a slab the flow may be expressed by the simple equation;

kAAt )

where

Q = rate of flow of heat through the slab, btu/hr

k = thermal conductivity of the slab material, btu/hr I’ ft

A = cross sectional area of slab perpendicular to the flow of heat, ft?
At = temperature difference across the slab, F

7 = thickness of slab, ft
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A problem of frequent occurrence in mechanical engineering is the
determination of the flow of heat from an insulated pipe. For this case
equation (1) must be modified to conform to the fact that the insulation
is curved and that the area perpendicular to flow is greater at the
outer surface.

The cquation for this case is:
_ 27kLAt @)
Q= D,
D,

log.
where

Q = heat loss, btu/hr

L = length of pipe, ft
At = temperature difference between inner and outer surface of
the insulation, F
outer diameter of insulation, ft
mner diameter of insulation, ft

D,
D,

i

i

Example 15.

Find the heat loss in btu per hr from a pipe of 8 inches outside
dinmeter if it is 50 ft long and covered with 2 inches of insulation
having a thermal conductivity of 0.035 btu/hr F ft. The inner tem-
perature is 850 ' and the outer temperature is 150 F. Answer 18,950
btu/hr

Solution:
From equation 2 write
27 X 0.035 X 50(850 — 150)
Q= 2

loge ‘8—

Divide 12 by 8 mentally to obtain 1.5. Set hairline over 1.5 on LL2
and read log. 1.5 = 0.406 on D. Subtract 150 from 850 mentally to
obtain 700. Noting that 2 X 50 = 100, the problem reduces to

0.035 x 70000 L
T 0406 ) Set hairline to 70,000 on D and move 0.406 on C

under hairline. Move hairline to 0.035 on C and read 6030 on D. This
may be multiplied by = by simple reading 18,950 on DF under the
hairline.
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b. Convection

Heat flow by convection is an extremely complex subject since
the mechanism of transfer is largely one of heat being conveyed from
one portion of a fluid to another by physical mixing. The interaction
of forces creating mixing and the consequent transfer of heat depends
on many factors such as the density, specific heat, viscosity. thermal
conductivity, temperature, and velocity of the fluid, as well as upon
the geometry of the apparatus in which the fluid is contained. Many
cases of practical importance have been studied but perhaps the most
useful to the mechanical engineer is the rate of flow of heat to or from a
fluid flowing inside a pipe or circular conduit. This problem has been
studied by Dittus and Boelter of the University of California. Their
work indicates that the rate of heat interchange between the inner
surface of a pipe and a fluid flowing inside the pipe is proportional to a
coefficient of conductance h. The rate of heat interchange in btu per
hr may be computed by multiplying h by the inner surface area of the
pipe and by the temperature difference between the inner surface
and the fluid. The value of h is given by the equation

3 E DVp>°-3(pcp>“
h = 0'023D(_T K 3)
where

h = coeflicient of conductance, btu/hr F ft?
K = thermal conductivity of the fluid, btu/hr F ft?
D = inside diameter of pipe, ft

V = mean velocity of fluid inside pipe, ft/hr

p = density of fluid, lbs/ft?

p = viscosity of fluid, lbs/hr ft
¢, = specific heat of the fluid at constant pressure, btu,ib F

n = an exponent equal to 0.4 if the fluid is being heated and 0.3

if the fluid is being cooled.

o . . . )
The term L s a dimensionless group called Reynold's number

and oceurs frequently in heat transfer and fluid flow calculations.
It is sometimes very large and for this reason falls beyond the range
of the LL3 scale on the slide rule making it necessary to apply special

methods when raising it to a power. The term y{_p is called Prandtl’s

number. It is usually quite small; often less than unity. Another group



72 CONVECTION

hD
called Nusselt’s number can be formed as I The use of such dimen-

sionless groups is widely employed in the theory of heat transfer and
fiuid flow. These groups usually occur raised to some power thus making
the slide rule particularly applicable to their solution.

Example 15:

Find the cocfficient of conductance of superheated steam flowing to

a turbine with a velocity of 150 ft/scc. The inside diameter of the pipe
is 6 inches. The stcam is under a pressure of 1,000 psia and a tempera-
ture of 800 F. The constants needed for the problem are k = 0.065
btu/hr F ft, p = 1.451 lbs/ft3, u = 0.104 lbs/ft hr ¢, = 0.61 btu/Ib F.
Answer 3920 btu/hr F ft2.

Solution:

Since the stecam is losing heat and therefore being cooled, the value
of o will be 0.3. Hence, equation (3) becomes

0.065 (6 X 150 X 3600 X 1.451)0-8 <0.104 X 0.61)"-3

h = 0023 ~% 0.104 0.065

12

® ©) ®
The solution can best be obtained by treating the individual terms
of the equation indicated by the encircled numbers separately. Then
by the usual methods.

h = 0.00299 X 45,200,000°% X 0.976°-3
® ® ®

Since 45,200,000 is beyond the range of the LL3 scale, it must be
divided into parts for the operation of raising to the 0.8 power. The
choice of division is not important so long as it is convenient and will
accomplish the desired result. The method which involves the least
work is to find the square root of the number, raise this to the 0.8
power, and square. Thus 45,200,000°-8 = 6720°8 X 6720°8 = 1150 =
1,323,000. To perform this operation, move the hairline to 45,200,000
on D and read its square root 6720 on R.. Set right index of C to 6720
on LL3 and move hairline to 0.8 on C. Read 1150 on LL3. Set 1150 on
R\ and read 1,323,000 on D. To find 0.976°3 set left index of C opposite
0.976 on LL/1 and move hairline to 0.3 on C. Turn rule over and read
0.99275 on LL/0. Substituting these values into the equation for h gives

h = 0.00209 X 1,323,000 X 0.99275 = 3920 btu/hr F ft?
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¢. Radiation

Heat may also be transferred from one surface to another by radiation.
The mechanism of radiation differs from that of convection and con-
duction inasmuch as the heat is transferred without benefit of any
intervening substance. It is radiated just as light except that the wave
lengths are usually much greater. The general relation expressing the
interchange of heat between two surfaces may be expressed by the

equation.
- )~ (%)’
Q=0173F, Fg A[(lOO 100 4)
where
Q = heat transferred by radiation, btu/hr

Fa = an angle factor which depends upon the geometry of the
surfaces and their relative positions, dimensionless
Fg = an emissivity factor which depends upon the ability of the
surfaces to absorb and emit energy, dimensionless
A = area of one of the surfaces, the choice of which depends upon
the method of evaluating F,, ft2.
T, = absolute temperature of the warmer surface, deg. R. = 460 4+ F
T: = absolute temperature of the cooler surface, deg. R. = 460 4+ F

An illustrative example will serve to indicate the method of solution
which will apply to problems of this type.

Example 16:

Find the heat transferred per square ft of surface of one of two
parallel plates if the angle factor is unity and if the emissivity factor
is 0.154. The temperature of the two surfaces are 400 F and 60 F respec-
tively. Answer 126.5 btu/Lr {t?

460 + 400\8 /460 + 6O0\S
Q= 0173 X 1 X 0.154[( oo ) ~ (Tios ] =

Solution:

0.02665[8.604 -5.204]

The values of 8.60* and 5.20* can be obtained by the use of the log log
scales, by direct multiplication, or by the use of the R scales in con-
junction with the C and D scales. The use of the log log scales is fast
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but is usually not very accurate. The use of the R scales is probably ‘ lt‘
just as quick and much more accurate. The use of direct multiplication 1t [
i t recommended I - 7 Lo consTANT
is not ree :nded. : —_
e % = *. °J] I 6
! > T =1 6 .
A

[

Solution using the L1 scales: ) l /——-”—7:
L|° o o S o+ o]

Set left index of C opposite 8.6 on LL3 and move hairline to 4 = t, g -
on C. Read 5500 on LL3. This is the value of 8.60% By similar It. ?ﬁ' CONDENSER SURFACE — &
methods, find 5.20* = 730. Then Q = 0.0265(5500 — 730) =

0.02665 X 4770 = 127.2 btu/hr ft?

Solution using the R scales:

Set right index of C opposite 8.6 on R.. Read 74 on D. This is r‘ ft,

8.60% Move hairline to 74 on C and read 5480 on D. This is 8.60%. J r . T,

Set left index of C opposite 5.20 on R, and read 27.04 on D. Move e I \\t,

hairline to 27.04 on C and read 731 on D. This is 5.20%. Then L= ..~ .-l el, IS

Q = 0.02665(5480 — 731) = 0.02655 X 4749 = 126.5 btu/hr ft2, L} = e 107 5
The latter solution is the more accurate of the two and to be preferred. tt. Itl‘ EVAPORATOR SURFACE —o

d. Logarithmic Mean Temperature Difference

Various types of heat exchanger equipment are frequently employed

in mechanical engincering applications. The most important of these ¢ T
are surface condensers, feedwater heaters, refrigeration condensers and t ' T ‘\_\1. i
evaporators, and counter and parallel flow heat exchangers. Their X L% e AT, 2%
primary purpose is to transfer heat from one fluid to another across a I /"g T /09.%;—
barrier such as a pipe wall or some other separating surface. If the 1"-
over-all cocfficient of heat transfer is known, it is possible to compute a SURFACE —=—
logarithmic mean temperature difference between the two fluids that (¢) Parallel flow heat exchangers.
can be multiplied by the surface area separating the fluids, and by the
over-all coeflicient, to obtain the rate of heat transfer. F’ T 1
— ) t,
I'hus Ll t IR _67’: At - -0
Q = UAAbLy (5) " |t fog, &
where 1 ' t
Q = rate of flow of heat from one fluid to the other, btu/hr SURFACE—
U = over-all coefficient of heat transfer between the two fluids, - (@) Counter flow heat exchangers.
btu/hr I {t? Fig. 34—Temperature-surface curves for fluids passing through various
Atry = logarithmic mean temperature difference between the two types of heat exchanger eqmpmelgﬁéﬁrten;c: logarithmic mean temperature

fluids, F.
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The relation between the two fluid temperatures as a function of the
surface arca for the various types of heat exchanger equipment is
illustrated in Figure 34. The equation expressing the logarithmic mean
temperature difference is the same in all cases and is given by the relation
At = il (6)
(6N
fog. D,
where
0, = temperature difference between the two fluids at inlet as in-
dicated in Figure 34, F.
0. = temperature difference between the two fluids at outlet as in-
dicated in Figure 34, F.

For surface condensers, feedwater heaters, and refrigeration condensers
and evaporators, the fluid which is condencing or evaporating remains
at a constant temperature. Hence, only one of the fluids changes tem-
perature as is clearly indicated in Figure 34, (a) and (b). Since equation
(6) holds for all cases, it is important in engineering work. Its use in
conjunction with cquation (5) is illustrated by the three following
examples.

Example 16:

In a large steam surface condenser 5,000,000 lbs/hr of circulating
water are raised in temperature from 60 F to 70 F. If the over-all
cocflicient of heat transfer is 720 btu/hr F ft? and if the condensing
steamn temperature is 79 F, what will be the required surface area? The
specific heat of the water may be taken as 1 btu/lb F.  Answer 5190 ft2

Solution:
From cquations (5) and (6)
O
log. —
A= Q_ _ O los 9,
UAtLM U(91 - 92)
Since the condensing steam temperature is constant, the value of
O, — 0. will be equal to the rise in temperature of the water. Hence,
Q = 5,000,000 (0, — 0:). Substitution of this value into the above
equation gives

5,000,000 79 — 60 _ 5,000,000 log 19

A= logesg—a0 = 0 *9
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Set 9 on C opposite 19 on D and read 2.11 on D opposite right index of
C. Move hairline over 2.11 on LL2 and slide 720 on C under hairline.
Move hairline to 5,000,000 on C and read 5190 on D.

Example 17:

A feedwater heater raises the temperature of 216,000 Ibs of water
per hr from 92 F to 175 F. If the over-all coefficient of heat transfer is
528 btu/hr F ft? and if the surface area is 769 ft?, what will be the
temperature of the condensing steam t.?

Solution:

From equations (5) and (6)

e —-6,_Q 6: _ UA(®: — 6))
Atin = lOge9_1 = UA or loge 6, = —~———————-Q
O,

Since the specific heat of water is unity, and since the condensing
steam temperature is constant, Q = 216,000(6, — 6,). Hence

t,— 92 528 X 769 _

o, _ _
loge & = loge =375 = 316000 ~ B8
or
&“_92 — ol.88
tw—175 ¢

The value of e'-8% may be read directly on LL3 opposite 1.88 on D
to obtain 6.55. Then

te — 92 _ 6.55 X 175 — 92 _
m = 6.55 or tc = 5.55 = 190 F.

Exzample 18:

A fluid having a specific heat of 0.65 btu/lIb F flows through a counter
flow heat exchanger at a rate of 520 lbs/hr. A second fluid having a
specific heat of 0.72 btu/Ib F flows through the exchanger at a rate of
714 lbs/hr. (a) If the first fluid enters at 560 F and leaves at 318 I
what will be the temperature of the leaving second fluid if it enters at

194 F? (b) What will be the logarithmic mean temperature difference?
Answer 353 F, 161F.
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Solution:

(@) The heat absorbed by the cooler fluid must equal that surrendered
by the warmer fluid. Hence, the following heat balance can be written

920 X 0.65(560 — 318) = 714 X 0.72(t, — 194)
or

_ 520 X 0.65 X 242
= % 079 T 194 = 150 4 194 = 353 F.

9

(h) Referring to Figure 34, it is clear that 6, = 560 — 353 = 270 F,
and 0. = 318 — 194 = 122 I, Then

M. OO _207—122 85
- log 1 B lo 2L.Z - ) 207
5o 0, e 122 98 193

Opposite 207 on D set 122 on C and read 1.696 opposite left index
of (. Set hairline over 1.696 on LL2 and read 0.529 on D. This is
072 & ‘4. -

logo,ff;. Set hairline over 85 on D and move 0.529 on C under hairline.

Read 1.61 on D opposite left index of C.

EXERCISES

171. Find the heat loss in btu/hr from a pipe 42.8 ft long covered with
insulation 1.5 inches thick having a thermal conductivity of 0.032
btu/hr F ft. The outside diameter of the insulation is 6 inches
and the temperature drop across the insulation is 227 F.

172. Compute the coefficient of conductance of water flowing through
a condenser if the tubes are § inch inside diameter. The velocity
of flow is 8 ft/see. The physical constants are k = 0.35 btu/lb F
ft, p = 623 lbs/ft?, p = 2.37 Ibs/ft hr, and ¢, = 1.00 btu/lb F.

173. Seven hundred Ibs/hr of a fluid having a specific heat of 0.85
btu/lb F are passed in a heat exchanger counter flow to 600 1bs/hr
of a fluid having a specific heat of 0.94 btu/Ib F. If the first fluid
enters at 500 F and leaves at 200 F, what will be the leaving
temperature of the sccond fluid if it enters at 100 F? Compute
the logarithmic mean temperature difference and the required
arca if the over-all coefficient of heat transfer U = 473 btu/hr F ft2.
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174. A surface condenser having a surface area of 40,000 ft? circulates
43,000,000 lbs of water per hr. The water increases in temperature
from 70 F to 82 F. If the over-all coefficient of heat transfer
U = 638 btu/hr F ft? what will be the temperature of the con-
densing steam?

175. A bare steam pipe passes through a room whose walls are at a
temperature of 70 F. If the surface temperature of the pipe is
325 F find the rate at which heat is lost to the walls per square ft
of pipe surface as a result of radiation. For this case assume
FA = 1.00 and FE = 0.90.

MACHINE DESIGN

In this section a few selected examples will be used to illustrate
typical problems encountered in machine design practice. The prob-
lems are selected on the basis of their illustration of certain points
regarding the operation of the slide rule rather than on frequency of
oceurrence.

a. Rectangular and Polar Moments of Inertia, Radii of Gyration.

An important problem in machine design is the calculation of the
stress induced in beams and machine members by the application of
bending moments and torsional forces. The methods required for the
complete solution of these problems are beyond the scope of this chapter.
However, an important item that often enters into the solution, and
which must be computed, is the moment of inertia of the cross section
of the beam or machine member. When taken about a horizontal axis
lying in the plane of the cross sectional area, and passing through its
center, one obtains the rectangular moment of inertia I. When taken
about an axis passing through the center of the cross sectional area,
but perpendicular to the plane of the area, one obtains the polar moment
of inertia Ip. Also of importance is the radius of gyration. It is that
radius which, when squared and multiplied by the cross sectional area,
gives the moment of inertia. In Table II, formulas for computing the
two moments of inertia and their corresponding radii gyration for
several widely employed cross sections are presented. A few examples
of their solution, illustrating principally the use of the K and R scales

follow.



TABLE II

Rectangular and polar moment of inertia of plane cross sections. Radii of gyration.

i
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Example 19:
=
T ~ H Find the polar moment of inertia and polar radius of gyration of the
3 4 . £|g i rectangular cross section in Table II if h and b are 2.22 and 1.50 inches
3 S Tl nE Tl respectively. Answer 1.99 in%, 0.774 in
FeEa | [)” BiE <['$ a) 'S
i =z =
=2 0 « .
& X Solution:
o
7 , Write the polar moment of inertia as
- _ bh(b? + h?) _ b3h[ (h)’] _150° X 2.22[ (2.22)2]
3 = == —=%'*\s/| =712 [ T\is
= & = o
é g& fiﬁ j o 2 'j’ o 2 o Opposite 2.22 on D set 1.50 on C. Opposite left index of C rea;12§.4:3
[ £ ~— :r‘c . g . . bk
g = < ‘ﬁ % * on D. Move hairline to 1.48 on C and read 2.19 on D. This is <1—50> .
a o Add one to 2.19 mentally obtaining 3.19 and set hairline over 3.19 on
- D. Move slide so that 12 on C rests under hairline and then move
hairline to 2.22 on C and read 0.59 on D. Find 1.502 by setting hairline
5 to 1.5 on D and reading 3.375 on K. Set right index of C oppusite 0.59
E ff_ on D. Move hairline to 3.375 on C and read the answer 1.99 on D.
5'—5 s ol Al &
25 S Write the polar radius of gyration as
~
e 222\
2 2 = -/~
S ] - R= [PHB_ 1+ (5) _is0, 1+ (T30
B. .z = = 12 —t —_
:b:ngi Zle T e Sl ] < Ll 12 12
sSgg =i~ o |= 'E © - |2 )
£ iz S s 2.22\2
e . By the same methods as above find 1 +<—1 50) = 3.19. Set hairline
opposite 3.19 on D. Move 12 on C under hairline and move hairline
over left index of C. Read 0.5155 on R.. Set left index of C to 0.5155
o o on D and move hairline to 1.5 on.C. Read the answer 0.774 on D. As a
g = " “, |L~ —, check R,? X bh = I,. Hence, 0.774? X 2.22 X 1.50 = 1.99.
£ TINE Ne ’__D_:"T
Z L =5 l @j_ ’ Example 20:
= .
Find the rectangular radius of gyration of the hollow rectangular
section if B, H, b and h are 3.2, 4.6, 1.8 and 2.6 respectively.
Answer 1.50 in?
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Solution:

For this problem it is casiest to solve for each member under the
racical separately using the R scales in conjunction with the CI and
D scales. Thus

B =32 X 4.6% = 3.2 X 4.6 X 4.6 = 312

To perform the above operations, set hairline opposite 4.6 on R, and
read 21.16 on D. This is 4.62 Slide 4.6 on CI under hairline and then
move hairline to 3.2 on C. Read 312 on D.

bh* = 1.8 X 2.6 X 2.6 = 31.65

Set hairline over 2.6 on R, and read 6.76 on D. This is 2.6%2. Slide 2.6
on CIl under hairline and move hairline to 1.8 on C to obtain 31.65 on
D. The denominator under the radical is found in the usual manner.

12(BH — bh) = 12(3.2 X 4.6 — 1.8 X 2.6) =12(14.72 — 4.68) = 124.8

then
312 — 31.65 _ \/590.35
k= \/-ﬁ{é"‘ = \iggg ~ 190

Set 1248 on C opposite 280.35 on D. Move hairline to left index of C
and read 1.50 on R,.
Example 21:

Iind the width of an elliptical scction of height 2.9 inches which will

give a rectangular moment of inertia equal to 0.584 in®.  Answer 1.60 in

Solution:

7a%h “l6a1  °l64 X 0.584
I = '*@‘ and a = ‘77'4‘)7* = “';rvsz‘z"g‘ = 1.60
Set = on C opposite 64 on D. Move hairline to 2.9 on CI and slide
0.584 on CI under hairline. Opposite left index of C read 4.1 on D.

Set hairline over 4.1 on K and read V4.1 = 1.60 on D.

b. Belt Length and Tension

The use of the S seale together with certain other manipulations
may be illustrated by the equations for belt length and belt tension.
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Figure 35 is an illustration of two pulleys over which an open belt
is stretched.

_

Fig. 356—~Pulleys with Open Belt.

The equation for length of belt required is

. ,D-d
L = \J4C* — (D — d)° +7r(D - ") + (D = dsin S5 (D

D ) .
where sin™! 50 must be in radians and

L = belt length, in

D = diameter of larger pulley, in

d = diameter of smaller pulley, in

C = distance between pulley centers, in

The angle of contact between belt and smaller pulley is given by the
expression

D-d
8

o = 180 — 2 sin™?

Expressed in radians o = 5%‘3 radians.

The tension developed by the tight side of the belt in terms of that
on the loose side is

T1 = Tze“ * <9)
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In equation (9)

T = tension on tight side, lbs
T = tension on loose side, 1bs
r = coefficient of friction between belt and pulley
a = angle of contact between belt and smaller pulley, radians

. d .
The effective torque for producing power will be (T, — T) 5 inch lbs

so that the horsepower developed will be

o — 27N(Ti = T)d _ Nd(T, — Ty)
P = 12 %33,000 X 2~ 126,000

(10)
where

N = revolutions per minute of the smaller pulley

d = diameter of the smaller pulley, in
Example 22:

(a) Compute the required length of an open belt to stretch between
two pulleys 60 inches apart if their diameters are 22 and 8 inches.
(b) Compute the angle of contact of the belt on the smaller pulley
in degrees and in radians. (e) If the belt is to transmit 20 hp and if
the smaller pulley is to operate at 800 rpm, what will be the tension
on the tight and loose sides of the belt. Assume x = 0.30.

Answer 168 in, 166.6 deg., 2.91 radians, 676 lbs, 282 lbs

Solution:

()
_ . 29 __ Q)2 22+8 - in-i{ 22~ 8
L= \/4 X 60 — (22 — 8) + 7,( 5 ) + (22 — 8)sin 1(2 X 60)

this may easily be reduced to the following

= 14 \/(120 — 147X 15+ 14sint 2

120
® ®

() Set 14 on C opposit,e 120 on D and read 8.57 on D opposite right

index of C. Move hairline to 8.57 on C and read 73.5 on D. This is
120°\?

(ﬁ) Subtract one from this mentally to obtain 72.5. Set hairline

over 72.5 on D and read 8.51 on R,. Set right index of C opposite 8.52

on D and move hairline to 14 on C. Read 119.2 on D. This is the value

of the first term.
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(® Set hairline to 15 on D and read = X 15 = 47.1 on DF.
(3 Divide 14 by 120 and obtain 0.1167. Set hairline to 0.1167 on C

14
and read 6.70 degrees on S. This is sin™ 120 in degrees. To find the

number of radians set hairline to 6.70 on D and slide 57.3 (marked R
on C scale) to hairline. Read 0.117 on D opposite left index of C. Mul-
tiply by 14 by moving hairline to 14 on C. Read 1.64 on D. This is
the third term. Adding the three terms gives

L =119.2 + 47.1 4+ 1.64 = 167.94 =< 168 in.
{b) The angle of contact will be

—d _ 180—2sin“—1—4-= 180 — 2 X 6.70

. .D
° =180 — 2 sin™! 2 30
= 166.6 deg.

Set hairline to 166.6 on D and move 57.3 (R on C scale) to hairline.
Read a = 2.91 radians on D opposite right index of C.

{c¢) From equation (10) the difference in belt tensions can be computed

126,000 hp _ 126,000 X 20

Nd_ ~ 800x§  ~ ootlbs

T1 - T2 =
also

?_1 j— a — a0.30X2.91 _ 0.873
T, = er e e
Set hairline to 0.873 on D and read %83 = 2.393 on LL2. Then

T, = 2.393T, = 2.393(T: — 394)
or
2.393 X 394

1393 = 676 lbs

T1=

and
T, = 676 — 394 = 282 lbs

c. Displacement and Velocity of the Piston of a Reciprocating
Engine ;

In Figure 36 is represented a crank and connecting rod similar to
that employed on reciprocating engines for the conversion of rectilinear
motion to rotary motion. With this mechanism two important problems
arise. These are the determination of piston displacement and piston
velocity as a function of crank angle 6. The two quantities may be
expressed by the equations:
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3
S =r{l — cos0 + %‘T'sin29 -+ %G) sint@ -+ --+) (11)

. n? . 12)
V = 27Nr(sin @ + Sl sin © cos 6 + %(f‘) sin*@cos O +)

where

8 = piston displacement, ft or inclixes
= length of piston rod, same units as S

— radius of crank, same units as S

= crank angle, degrees ‘ ' . .

= piston velocity, ft/min or in/min depending on umnits chosen
for l and v '

N = revolutions per minute

Equations (11) and (12) may be solved with‘ a high degree of 3ccuracy
b;rl including the last term, but in general this may be neglected.

<D -
|

Example 23: . ' o
(a) Find the piston displacement in inches an(! piston velocity 1.f
ft/;nin for an internal combustion engine operating at 3000 rpm 1
68 degrees, 1 = 8 in and r = 3 in. (b) Solve the same problem,
= es, .
i if @ = 185 degrees.
neglecting the last term, 1f.e : ‘ ‘
Ari;wer 2.38 in, 4950 ft/min, 5.99 In, — 252 ft/min.

Solution:
(a) o
S = 31 — cos 68° + } X § sin? 68° + } (3)° X sin 68° 4 -]
and | o
V= _2_’953’10—20953 [sin 68° + § sin 68° cos 68° 4 }(3)" sin? 68

cos 68° + --

]
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Using the S scale in conjunction with the C scale both the sin and cos
of 68° are found to be 0.934 and 0.3745 respectively. The remaining
steps are simple and need not be explained in detail.

S =3[1 — 0.3745 + 35 X 0.934 + % (2)% X 0.934¢]
= 3[1 — 0.3745 + 0.1636 + 0.00406] = 2.38 in.
V = 4615[0.934 4 § X 0.934 X 0.3745 4 } X ()% X 0.934% X 0.3745]
= 4615[0.934 + 0.1312 + 0.00805] = 4950 ft/min.
(b)

Since sin 185° = —sin 5° and since cos 185° = —cos 5° one may find
from the ST and S scales in conjunction with the C scale the following :

Sin 185° = —sin 5° = ~0.0871 (from ST scale)
Cos 185° = —cos 5° = —0.996 (from S scale)
then

S =3[140.996 + § X £ X 0.0871?] = 5.99 in.
V = 4615[—0.0871 + § X 0.0871 X 0.996] = — 252 ft /min.

The negative sign for velocity in this case simply means that the
piston in Figure 1 is traveling form right to left.

EXERCISES

176. Compute the rectangular moment of inertia and rectangular radius
of gyration of a circular annulus if D = 4.5 in and d = 3.44 in.
Check moment of inertia by using radius of gyration and area.

177. Compute the polar moment of inertia and polar radius of gyration
of the hollow rectangular cross section if B = 4.3, H =64,
b =27 and h = 4.8. Check moment of inertia using radius of
gyration and area. :

178. Find the length of belt required for two pulleys 72 inches apart
if one pulley is 48 inches in diameter and the other is 8 inches
in diameter.

179. Find the angle of contact for the smaller pulley in problem 178
both in degrees and in radians. If the pulley is to transmit 15 hp
at 800 rpm what will be the tension on the two sides of the belt
assuming u = 0.20
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180. Find the piston displacement and velocity for a steam engine
operating at 150 rpm if 6 = 80 degrees, 1 = 3 ft and r = 0.75 ft.
Solve the same problem for O = 12 degrees.

Chapter 9

APPLICATIONS TO ELECTRICAL ENGINEERING
by B. A. FISHER, B.S, M8, EE.

Purpose. The purpose of this chapter is to present a few of the
situations in which the Frederick Post Versalog slide rule offers unusual
advantages to the Electrical Engineer, and in certain cases to describe
the methods to be used in order that the maximum of advantage may
be realized. Detailed attention will be given to the uses of the trig-
onometric scales. It is in that area that the Electrical Engineer will
find his greatest satisfaction with this slide rule but the benefits can
be realized only if proper operational procedures are mastered. A small
investment in time spent at the outset in learning such procedures
will pay off handsomely in the long run.

THE C AND D SCALES

In Electrical Engineering as in other fields, the bulk of the every
day routine work is done with the C and D scales. It is worth while to
devote considerable attention to the procedures outlined in the earlier
chapters of this manual for their most economical use, including com-
bined operations with the w-folded C and D scales. Facility in handling
proportions is also of great value in Electrical Engineering. Illustra-
tions follow.

Use of Proportion Methods in Problems of Resistance Changes
Resulting from Temperature Changes. Resistances of metallic
conductors increase with increasing temperature. The formula represent-
ing this change is most conveniently expressed as a proportion, as
follows:

R _ 2345 + to
R, 2345+t

where R, is resistance at centigrade temperature t. and R; is resistance
at t;. The constant 234.5 is suitable for ‘‘standard annealed copper.”
Other constants are required for other materials. The slide rule C and
D scales are very convenient for the solution of any proportion.

89
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Example: The ficld winding of a motor has 56 ohms resistance at
an ambient temperature of 25° C. After full load operation for two
hours the resistance is found to be 74.3 ohms. What average temperature
was reached by the winding?

Solution:
743 2345+t

56 259.5

The slide rule is used to find 234.5 + to. The procedure using pro-

portion ix to bring 743 on the C scale in register with 56 on the D
scale. Then set the hairline to 2595 on D and read 234.5 + t, = 344.5
on C. > = 3445 — 234.5 = 110°C.

Any one of the four quantities Re, Ry, to, or t; may, of course, be
the unknown.

For slide rule users who have continually to make this type of calcu-
lation, it is recommended that auxiliary scales be etched on the slide
rule adjacent to the C and D scales as follows:

At 21L5 on C and D, put a mark and label it —20°; at 234.5, another
mark labeled 0°; at 254.5, a mark labeled 20°C; and on up every 20°
to temperatures as high as required. With such auxiliary scales it
becomes possible to make the calculation direct in centigrade degrees
without the irksome requirement of adding and subtracting 234.5.

For materials other than standard annealed copper, the constant
234.5 must be replaced as follows:

Hard drawn copper 242
Commercial aluminum 236.5

Silver 243
Platinum 313
Nickel 230
Merecury 236.5
Tungsten 202
EXERCISES

181. A 100 watt tungsten filament lamp operating at 2,200° C has a
resistance of 132 ohms. What is its resistance just after switching
on, before the temperature has had a chance to rise above room
temperature of 20° C?
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182. The “cold,” (30° C), resistance of an armature winding of copper
is 0.0345 ohms. If, under full load operation, the temperature is
expected to rise 50°, what is the expected operating resistance?

Use of =-Folded Scales for Circular-Mil Areas of Rectangular
Conductors. The cross-sectional area expressed in circular-mils of a
rectangular conductor is found as follows:

b . . , .
circular mils, where a and b are the cross-section dimen-

Area =

sions in mils.

Example: A rectangular rotorconductor in an induction motor

has a cross seetion § inch by 3 inch. Find the cross section in circular mils.
4 X 250 X 500 . .
Area = — = 159,100 circular mils.

Here the important thing is to make economical use of the m-folded
scales. In this case it is only necessary, after noting that 4 X 250 = 1000,
to set the hairline to 5 on the DF scale and read 1591 on D under the
hairline.

EXERCISE

183. What is the cross section in circular mils of a bus bar 0.25 inches
thick and 3.5 inches wide?

THE R SCALES

The square root scales are of particular value to the Electrical
Engineer. Examples of their uses follow:

Copper Loss in Wires and Machines when the Current and
the Resistance Are Known.

Example: For a current of 120 amperes in a resistance of 0.076
ohms, to find the power dissipated using P = I’R: Set hairline to 120
on R; place 76 on CI under hairline; read result on D under left index
of slide, P = 1094 watts.

Copper Loss in Wires and Machines when the Potential Drop
and the Resistance Are Known.
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Example: For a voltage drop of 9.11 volts in a resistance of 0.076
ohms, to find the power dissipated using P = E?/R: Set hairline to 911
on R; set 76 on C under hairline; read result on D under left index of
slide, P = 1092 watts.

Note that in these operations greater accuracy is possible than with
slide rules employing the conventional “A’” and “B”’ scales; and setting
of the decimal point is simplified.

Calculations Relating to Circuits Possessing Resonant
Qualities. It is frequently necessary to evaluate v/LC, v/ L/C, and
V/C/L where L and C are inductance and capacitance (sometimes per
unit length of circuit). Here the quantity under the radical is evaluated
by the usual methods using the C and D scales. A final setting of the
hairline transfers this quantity to the R scale where the square root
is read.

The slide rule settings concerned require no illustration at this stage
of the instruction but because of the orders of magnitudes usually
involved, the decimal point must be located with care.

Exam_ple: I, = 150 microhenries. C = 80 micro-micro-farads. To
find \/LC

VIC = V15 X 10 X 0.8 X 1079 = /1.2 X 10 = 1.095 X 10~7

It is to be noted that even powers of ten were factored from the
numbers in order to bring the decimal points close to the first digit
and to facilitate taking mentally the square root of the power of ten.

Root-mean-square Value of Non-sinusoidal Current or Volt-
age. When the r.m.s. values of the harmonic components are known,
the r.m.s. value of the non-sinusoidal function may be found from

E = \/E21 + E% + E?; 4 ete.

Here the R scale may be used with the D scale. Full advantage is

gained from the superior accuracy of this slide rule over those having
A and B seales.

Power Factor for Phase Angles Less than 10 Degrees. We may
use the approximation
xz

cosx=1—§
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Cosine scales on slide rules are so condensed below 10 degrees as
to render accurate interpolation difficult. When a cosine in this range
must be known accurately, as is often the case in power factor problems,
the approximation given above may be used to advantage.

x is the phase angle in radians. The upper limit at which this approx-
imation should be applied is 10° = 0.1745 radians. Let us calculate
cos (0.1745 radians) according to the approximation and compare the
result with a five-place table. The error made will be the muximum,
since for smaller values of x the method becomes more accurate.

x = 0.1745 radians.
x? = 0.03045 radians, using the R scale in the usual way with
the D scale.
x%/2 = 0.01523.
1 — x%/2 = 0.98477 = cos 10° approximately.

From a five place table cos 10° = 0.98481. The difference is 0.00004.

Circular-mil Areas of Round Conductors. Area = D? circular
mils where D is diameter of wire in mils.

Example: A micrometer caliper shows the diameter of a round
wire to be 0.1019 inches. Find the area in circular mils.

Area = 101.9% = 10,380 circular mils.

This calculation is made with the help of the R scale in the usual way.

EXERCISES

184. The potential drop across a load is indicated by a voltmeter
reading to be 232 volts. The voltmeter resistance is 30,000 ohms,
as is the resistance of the potential coil of the wattmeter. What
“potential coil loss” error must be subtracted from the watt-
meter reading?

185. Caleulate the copper loss in a field winding of 57 ohms resistance
if the current is 0.89 amperes.

186. Determine the surge impedance of a radio-frequency transmission
line whose inductance per foot of line is L = 304,500 micro-micro-
henries and whose capacitance per foot is C = 3.385 micro-
micro-farads. (Z. = v/L/C)
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187. What capacitance C in micro-micro-farads is required to tune a
200 micro-henry coil to a frequency of one million cycles per

sceond?
1
(C - (27rf)2L)

188. Measurements with a “wave analyzer” on a nonsinusoidal voltage
wave indicate the folowing components to be present: I, = 287,
B =507, Ky =22 1,=09, I& =0, E =0, E; = 2, all being
root-mean-square voltages. Find the root-mean-square value of
the wave.

189. Ifind cos 1.62 degrees.

190. Fiad the circular-mil area of a stranded wire made of 7 strands
of circular conductor, each strand having a diameter of 0.0808
inches.

THE L SCALE

The L seale is useful for ealculation of logarithmic power ratios in
terms of decibels by either of the formulae:

P
d.b. = 10 IOngi or db. =20 loglo%

P
Example: Letﬁ = 460. Set the hairline to 460 on D. Read the

mantissa of log,y 460 under the hairline on L, obtaining 0.663. Mentally
determine the characteristic of the logarithm and add it to the mantissa,
thus: 2.663. Then d.b. = 26.63. 1f data from the same physical situa-
. . . . A4
tion had been in terms of voltage ratio, this would have been vz = 21.45.
1
Proceeding as before, loge 21.45 = 1.3315 or d.b. = 26.63
Sometimes it is necessary to calculate the power ratio corresponding
to a known number of decibels change in power level. This relationship
is expressed by the equation .
P 1o (@;
P, & o\ 10

Example: d.b. = 26.63. d.b./10 = 2.663 = logm%- Set hairline to
1

663 on L. Read under the hairline on D the digits 460 representing

it
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P,/P.. The decimal point is placed after the third digit because the
characteristic of the logarithm 2.663 is 2.
If voltage ratio is desired from the above data, 2772 = % =
1 1
/460 = 21.45 may be obtained from the D and R scales in the usual
way.

EXERCISES

191. In carrier-frequency telephone repeater input circuits one-half of
the received power is lost in a line-matching resistor. What is
the d.b. power loss in this case?

192. In a radio frequency amplifier the input voltage is 0.2 volts. The
output voltage is 45 volts. Find the d.b. voltage gain.

193. A 600 ohm low pass filter designed to ““cut off”’ at 2,000 cycles
per second accepts 6 microwatts power at this frequency, whereas
a termination of 600 ohms would accept 1 milliwatt. What loss
in d.b. is introduced by the filter, at this frequency?

THE LL SCALES

The unique log-log scales of the Post Versalog slide rule are of great
value in a variety of electrical problems. These scales have an arrange-
ment and coverage that make them unsurpassed for the following
calculations:

Exponential Decay Terms in the Solution of Transient
Problems. These terms take the form e %t where the function must be
evaluated for a series of values of the time t. The exponent kt is first
determined for different values of the time t. The hairline is then suc-
cessively set to the values of kt on the D scale and the corresponding
results for et read from the appropriate level of the reciprocal log log
scales as determined from the right end zone symbols.

Examples:
kt gkt
0.008 on Dgives 09920 on LL/0
008 on Dgives 0.9231 on LL/1
0.8 on D gives 0.4495 on LL/2
8.0 on D gives 0.00034 on LL/3
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Note that with this slide rule the exponential term may be found
with good aceuracy from 0.999 down to 0.0000454, for values of the
exponent from 0.001 to 10.0. For times on the transient carlier than
kt = 0.001 it is possible with a maximum error of about 5 parts in one
million to use the LI/0 scale for the range kt = 0.001 to 0.0001. This
is done by assuming another 9 to be inserted between the decimal point
and the numerals in the numbering of the LL/0 scale.

Thus: e=%% = (0.99920. Similarly,
¢ 008 = () 999920, ete.

Thus there is no limit to re-cycling on the LL/4 scale toward unity.
Two digits beyond the 9’s will be accurate.

Hysteresis Loss in Iron. The loss is expressed as

P, = Kuf BX where
Pi = hysteresis loss in watts per pound of iron;
Ky = a coeflicient;
f = frequency in eyeles per second;
B.. = maximum flux density in kilo-lines per
square inch;
x = the “Steinmetz exponent.”
Example: I, =06, K, =1.2 X 107 B, =65, f = 60. Find x:

0.6 = 1.2 X 107% X 60 X 65
65 = 833.

|

The question is, to what power must 65 be raised to give 8337 Set the
hairline to 65 on LL3; set left index of C to hairline; move hairline to
833 on LL3; read x = 1.61 under hairline on C.

The inverse of this problem arises when Pp is unknown and x is
known. As an illustration, suppose x = 1.61, B, = 70, and other data
as in the previous example. Find Py,

Py = 1.2 X 107 X 60 X 70t-¢

Ivaluate 7010 = 937 as follows:

Set hairline to 70 on LL3; sct left index of C to hairline; move hairline
to 1.61 on C; read 937 under hairline on LI.3. Then

Pn = 1.2 X 1078 X 60 X 937 == 0.675 watts per pound at 60 cycles.

Emission of Electrons from Cathodes. Calculations in this field
frequently require raising a number to a power. The exponent is
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frequently 1.5 or 4.0. Since the method of solution is the same as that
given under the heading Hysteresis Loss in Iron, details will not be
repeated.

EXERCISES
194. A 3 micro-farad eapacitor charges through an 800,000 ohm resistor
from a 400 volt source. Find the current at t = 2.4 seconds.

(Formula: i = —ge‘t/RC)

195. Repeat the previous exercise when t = 4.8 seconds.
196. Repeat for t = 0.048 seconds.

197. An iron core has a hysteresis loss of 0.5 watts per pound at 60
cycles and B, = 65. x is known to be 1.6. Find K,.

198. The plate current in a certain vacuum tube follows the law:
I =1.2 X 10~ E'4 If the voltage E is 200, find I.

THE TRIGONOMETRIC SCALES

The Post Versalog slide rule includes trigonometric scales which
have been designed with especial attention to the needs of the Electrical
Engineer. In the past considerable resistance to the use of so-called
“vector scales” has existed on the part of students of Electrical En-
gineering, and even among instructors in this field. With slide rules
existing prior to the Post Versalog rule, this resistance was well founded
because there was no simple way to keep track of basic operations of
multiplication and division by sin 0, cos 0, and tan ©. So much care
was required to avoid operational errors due to misuse of the scales
that the many advantages possible with properly designed trigonometric
scales were greatly reduced. )

Any user of this slide rule who has mastered the use of the C and CI
scales for multiplication and division can multiply and divide by sin 0,
cos O, or tan O with the same assurance he feels in using the C and
CI scales. Only one simple rule has to be observed: If a trigonometric
scale is black, use it as you would a C scale; if red, use 1t as you would a
CT scale. Electrical Engineers will find that their Post Versalog slide
rules permit solution of alternating current problems with a freedom
from operational errors not possible with other slide rules.
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The non-specialized uses of the trigonometrie scales have been treated
cisewhere in this manual. The reader should, before proceeding, review
the descriptions and fundamental uses of the trigonometric scales there
given.

It 1s again urged that the slide rule user cultivate the habit of think-
ing of the four black trigonometric scales as though they were in fact
C scales, and of the two red trigonometric scales as though they were
in fact CI scales. Such is indeed the fundamental nature of these scales,
a simple faet which makes their uses quite as simple as those of the C
and CI seales. An example will illustrate this point.

Example: A load of 4,000 kilowatts draws current at a lag angle of
25 degrees. (2) Find the number of kilovolt-amperes. (b) Find the
reactive power drawn from the line.

Solution:

(a) kva = kw__ 4,000 = 4,415

cos O  cos 25°

Here cos 0 is 0.906 as may be verified by setting the hairline to 25°
on the Cos scale and reading 0.906 on C. It is unnecessary to take the
additional step of evaluating cos 6, and then dividing 4,000 by 0.906.
Instead, the hairline is set to 4,000 on D, the slide moved to bring 25°
on the Cos scale under the hairline, and the result is read on D under
the right index of C. Note that the setting used is exactly the same as
that used in evaluating %’%%? with the C scale. Thus, the division was

. )
performed by using the Cos scale as though it were a C scale.

(b) kvar = (kw) tan 6 = 4,000 tan 25° = 1,865

Tan 25° = 0.466, which may be verified by setting the hairline to
25% on I’ (black) and reading 0.466 on C. This step is unnecessary.
Instead, set right index of T (black) to 4,000 on D and set hairline over
23° on 'I' (black). Read 1,865 on D under hairline. Here the (black)
tangent scale has been used as though it were a C scale to perform a
multiplication. Part (b) could have been solved another way:

kvar = (kva) sin © = 4,415 sin 25° = 1,865

S
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Here the S scale has been used like a C scale, for multiplication.

Another example will further illustrate the complete consistency
possible in viewing the trigonometric scales as equivalent to C or CI
scales.

Example: During a zero power factor test on an alternator, a phase
angle of 89° was actually attained. The power delivered by the machine
was 520 kw when operated at rated current and voltage. Find (a) the
rated kva and (b) the reactive kva drawn during the test.

Solution:

kw 520
cos ©  cos 89°

In this solution the slide rule operator observes that his cosine scale
ends at 84.27°. He finds instead a scale Sec T (red) covering this region.
In place of dividing by cos 89°, he multiplies by sec 89°, since 1/cos 6 =
sec O. It is interesting to note that the settings employed are identical
with the settings which would be required to divide by cos 89° had the
secant scale been made black and called “‘cosine.” This scale is made red
and called “secant” in the design of the slide rule because it is desirable
to utilize the same scale for tangents. The tangent and the secant are
nearly equal in this range, and the tangent scale requires the red color.

(b) kvars = (kw) tan © = 520 tan 89° = 29,800

(a) kva = = 520 sec 89° = 29,800.

Here it is observed that the same setting is used as in (a), since for
angles near 90° tan © is approximately equal to sec 6.

THEORY AND PROCEDURES

In Electrical Engineering the principal applications will be in the
solution of alternating current problems where it is necessary to make
frequent conversions between the polar and the rectangular forms of the
phasor (often but improperly called vector) quantities. In Electrical
Engineering, these quantities are symbolized in the following two forms:

Polar Form  Rectangular Form
Al = a—+jb (1)

The angle © may have any value from zero to 360 degrees and quite
frequently is close to zero degrees or to 90 degrees: The process of con-
version from polar to rectangular form will be discussed first.
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I. Polar Phasor to Rectangular Phasor.

For purposes of illustration, let the phasor be an impedance
Z[6 =R+ jX 2

Where: Z is magnitude in ohms;

© 1s phase angle in degrees;

R is resistance in ochms;

j is v/ =T, called in mathematics i;
X is reactance in ohms.

The problem is: given Z and 0, to find R and X. The relations are

Graphically:
Analytically:
X 7|6 = Zcos® + jZsin O ®3)
92 The solution takes the form:
R R=%ZcosO X =1Z%sino 4)
Fig. 37.

which for convenienee is usually applied in one of the following equiva-
lent forms:
R=X/tan 6
R=%ZcosO

X =Zsino (5)
X =Rtan© (6)

Equation (4), while simple to visualize, requires additional labor
under certain circumstances. Equations (5) and (6) cover all situations
with equal economy of effort.

Equations (5) and (6) suggest the following rules:

(A) When 0 < 45° use (5). First find X = Z sin 0, then divide this
result by tan 0 to get R. For Fxample:

1.2{7° = 1.2sin 7°/tan 7° 4 j 1.2 sin 7° = 1.19 + j 0.1462
(B) When 0 > 45° use (6). First find R = Z cos 6, then multiply
this result by tan 0 to get X. For example:
1.2|70° = 1.2 cos 70° 4 j (1.2 cos 70°) tan 70° = 0.410 4 j 1.128
The reader, having recognized that the trigonometric scales are used

exactly as C or CI scales for multiplication and division, will check the
above examples without difficulty. He will observe that such problems

i
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are solved with three motions: set slide, set hairline, set slide. As a
check on proper procedure, he should have worked as follows:

Procedure A: Note that the angle is less than 45°. Therefore, find
the imaginary component first. Set the index of C to 1.2 on D; set the
hairline to 7° on S; read X = 0.1462 under hairline on 1J; move slide
to bring 7° on T (black) under hairline; read R = 1.19 on D under
index of C.

Procedure B: Note angle is greater than 45°. Therefore, find real
component first. Set the index of C to 1.2 on D; set the hairline to 70°
on Cos; read R = 0.410 under hairline on D; move slide to bring 70°
on T (red) under hairline; read X = 1.128 on D under index of C.

In practice, procedures A and B are almost identical. It is only neces-
sary to watch the first multiplication, using the S scale in the one case
and the Cos scale in the other.

EXERCISES
Convert the following polar form phasors to rectangular form:
199. 1.2{44° 205. 1.2/46°
200. 9|30° 206. 9 60°
201. 9| —30° 207. 9| —60°
202. 0.02[29.2° 208. 0.02/60.8°
203. 0.02| —29.2° 209. 0.02! —60.8°
204. 36.2/10° 210. 36.2/80°

Rules A and B may now be summarized in a single inclusive rule:

(C) To convert a polar phasor to complex form, find first the smaller
component by multiplying Z by sin 0 or cos © as the case may require;
then divide or multiply by tan © as the case may require.

The application of Rule C is extremely easy to master since the slide
rule settings take the same form whether O is less than or greater than
45°. The reader should repeat exercises (199) to (210) with rule C in
mind. The slide rule settings will be: Set an index of C to Z on D. Set
hairline to sin © (B < 45°) or to cos 6 (0 > 45°). Read X (0 < 45°) or
R (6 > 45°) on D under hairline. Move slide until © on T (black or red),
is under hairline. Read R (8 < 45°) or X (8 > 45°) on D at an index
of C.

Exercises (199) to (210) included only angles between 5.73° and 84.27°.
There is no difficulty in placing the decimal point in these cases since
within this range all components, whether real or imaginary, must lie
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between 0.1 Z and 1.0 Z. The next step is to extend the range to very
small angles.

Polar Phasor to Rectangular Phasor for Angles less than 5.73°.
The concepts expressed in rule C may be applied unchanged. Hence,
find the short side by multiplying Z by sin O, using angles on scale ST
(black). However, when the sceond step is taken, i.e., the division of X
by tan 0, it will be apparent that the result will be R = Z. That is to
say, for angles less than 5.73°, the real or resistive component of Z is
equal to Z. It is only nceessary, then, to calculate X, the short side of
the triangle.

Fxample:

1.205° = 1.2+ j 1.2 sin 5° = 1.2 + j 0.1047

It should be remembered that the range of the ST scale is from 0.01
on the left to 0.1 on the right. Hence, the X component lies between
0.01 Z and 0.1 Z.

The lower limit of ST in terms of angle is 0.573°, found near the left
end. The natuve of this scale is such that we can begin again at the
right end with 0.573° and range on down to 0.0573° at the left end,
merely by moving the decimal point one place to the left, in both @
and sin O. In this way, the conversion from polar form to rectangular
form may be made for angles as near zero as we please. This cyclic
feature of the ST scale results from the fact that it is based on the
approximation (valid to slide rule accuracy for angles less than 5.73°) that

6 (in radiang) = sin © = tan ©

The seale gives correet values of © in radians when used with the
C scale. Consequently, there is a small but innocuous error in the values
of sin 0 and tan © as read from the C scale for angles near the 5.73°
limit of ST. The reader should insure his own confidence in the ST scale
by comparing values of sin © and tan © taken from it with corresponding
values found in trigonometric tables.

Examples: (The first is repeated for comparison)
1215° = 1.2 4 j 1.2 8in 5° = 1.2 + j 0.1047
1210.7° = 1.2 4+ § 1.2 sin 0.7° = 1.2 + § 0.01467
1.2]05° = 1.2 + j 1.2 sin 0.5° = 1.2 + j 0.01047
12/0.07° = 1.2+ j 1.2 sin 0.07° = 1.2 + j 0.001467, ete.

The deeimal point in X is moved to the left as many placgs
as the decimal point in 6 is moved. Another way of expressing this
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relationship is—the range of the ST scale is multiplied by 10~ every
time the decimal point is moved one place to the left in the angular
markings of this scale.

EXERCISES
Convert to complex form:
211. 4,200/2.5°
212. 4,200/0.25°
213. 4,200(0.025°

Polar Phasor to Rectangular Phasor for Angles greater than
84.27°. Here again, the long side of the triangle, in this case X, is to be
taken equal to Z. The short side is calculated according to Rule C from:

R =2Zcos0 = Z/secO
Example:
9[§_8:_= 9/sec 88°+j9 =0314+j9

Here the setting employed is: Right index of slide to 9; hairline to
88° on Sec T (red); read R = 0.314 under hairline on C. The secant
scale is essentially a CI scale, hence it is employed for division like a
CI scale. In other words, the proper view point to hold for angles greater
than 84.27° is still to find the real component by multiplying Z by cos 6.
When the attempt is made on the slide rule, a secant scale is found in
place of a cosine scale in this range of angles. So we divide by sec 0 as
the equivalent of multiplying by cosine 0.

The cosine scale covers the range of angles from 0° to 84.26° and of
cosines from 1.0 to 0.1. The left end values of 84.26° and cosine = 0.1,
are equivalent to 84.26° and secant = 10.0. The Sec T (red) scale
begins with 84.27° at its right end and extends to 89.427° and secant =
100.0 (cosine = 0.01) at the left end. Like the ST scale, this scale can
be used repeatedly for angles nearer and nearer to 90°. For each re-
cycling, the fractional part 427 is to be moved one decimal place to the
right and the vacated place replaced by a nine (9) as summarized in
the following table:

Sec T (red) Scale:
Left end
Given range: sec 89.427° = 100
Second range: sec 89.9427° = 1000
Third range: sec 89.99427° = 10000
ete.

Right end
sec 84.27° = 10.0
sec 89.427° = 100
sec 89.9427° = 1000
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Examples:
1.2185° = 1.2/sce 85° + j 1.2 = 0.1047 + j 1.2
1.2{80.3° = 1.2/sec 89.3° + j 1.2 = 0.01466 + j 1.2
1.2]89.5° = 1.2/sce 89.5° + j 1.2 = 0.01047 + j 1.2
2{89.93° = 1.2/se0 89.93° + j 1.2 = 0.001466 + j 1.2
ele.

EXERCISES
Convert. to complex form:
214. 4,200|87.5°
215. 4,200(89.75°
216. 4,200{89.975°

Phasors Not in First Quadrant. (Conversion from polar to rec-
tangular form.) In eleetrical problems phasors frequently appear at
angles greater than 90°, i.e., in the second, third, and fourth quadrants.
Line potential differences and eurrents at various points along a trans-
mission line may lag several quadrants behind the input voltage.
Transfer impedances may have any angle whatever. (A transfer im-
pedance is defined as the ratio of a source potential difference applied
in one branch of a network to the current in some other branch.) Such
problems are brought within the scope of the preceding diseussion of
the first quadrant by the method illustrated in the following example.

Foxample 1.

630 *x A transfer impedance is known in

polar form as 630 ohms at angle 128°.

. Find its real and reactive components.

< | N The recommended procedure is to draw
PN ‘ \ a sketch in polar form as shown in the
m +R  diagram. Calculate the angle 8, the
smaller angle made by the phasor with

the horizontal axis.
Determine R and X by the methods
explained for the first quadrant and give

these components the proper sign as in-
dicated in the sketch.

-R

-X
Fig. 38.
B = 180° — 128° = 52°
630152° = 630 cos 52° 4 (630 cos 52°)(tan 52°) = 388 +- j 497
630/ 128° = —388 + j 497

ANGLES OUTSIDE FIRST QUADRANT

Example 2.
6301218° = R -+ jX. Find R and X.

+X

2/8’/‘\
I

P

630

Fig. 39.

B = 218° — 180° = 38°

630|38° = (630 sin 38°)/tan 38° + j 630 sin 38° = 197 + j 388

630]218° = —497 — j 388

Example 3.
630/308° = R + jX. Find R and X.

+X

~

R

7

630
Fig. 40.

B = 360° — 308° = 52°

630|52° = 630 cos 52° + j(630 cos 52°) tan 52° = 388 + j 497

630/308° = 388 — j 497

ﬂX

+R

105
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EXERCISES

Convert. the following phasors to complex form:

217, 220]62°
218. 220]152°
219. 220/242°

220. 220)332°
221. 220| —28°

II. Rectangular Phasor to Polar Phasor.
The problem is the inverse of that stuted at the beginning of section I,
and will be handled by the same relations, ie., equations (5) and (6),

rearranged as follows:

+« X/R = tan ©/1 = tan O/tan 45°; Z = X/sin O (7
R/X = 1/tan O = tan 45°/tan 0; Z = R/cos © (8)
Equation (7) is to be used when 6 < 45°.

Iquation (8) is to be used when 6 > 45°.
Two examples carried through in parallel form will illustrate the two

CASCs
To find Z°0 when

R+ N = 133 +j25

X-25

6
R:433

Fig. 41.

Find 0 using the proportion
X/R = tan 0/tan 45°

Scttings: Hairline to 2.5 on D.
Index of slide to 4.33.

The hairline is now located at
60°/30° on 'I'; choose © = 30° be-
cause X < R.

Find 7 using 7 = X/sin 0.

Settings: The hairline is already
on X on the D scale. Move slide to
bring sin 30° under hairline. Read
Z =5 on D under index of slide.

R+jX =25+ j4.33

z X*4.33
)
R=2.5
Fig. 42,

Find © using the proportion
R/X = tan 45°/tan ©

Settings: Hairline to 2.5. Index
of slide to 4.33.

The hairline is now located at
60°/30° on T; choose O = 60° be-
cause X > R.

Find Z using Z = R/cos 0.

Settings: The hairline is already
on R on the D scale. Move slide to
bring cos 30° under hairline. Read
Z = 5 on D under index of slide.
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If the reader will carry out the operations just described, he will see
that the two cases resulted in identical slide rule scliings throughout.
Differences appear only in the interpretation of the settings. Thus, to
determine the angle, a choice had to be made between 30° and its com-
plement, 60°. This choice should be made solely as a result of visualiza-
tion of the triangle: If X < R, choose the smaller angle. If X > R,
choose the larger angle.

Again, in finding Z after 6 was known, a choice had to be made be-
tween dividing the hairline setting by sin © or by cos 0. Again, the choice
is made by visualizing the trigonometry involved: If hairline is on X,
divide by sin 0, (sin 30°) If hairline is on R, divide by cos 0. (cos 60°)
Since sin 30° = cos 60°, these two settings were identical. The reader
is now in a position to appreciate the following:

Rule D: To find Z_I_G when the two components R and X are given:

1. Set the hairline to the smaller component on D.

2. Set an index of the slide to the larger component on D. Under the
hairline, read the angle on T (black or red) selecting the proper
angle by visualization of the triangle.

3. Leaving the hairline on X or on R as the case may be, divide X
by sin 6 or R by cos © to get Z. (Bearing in mind that the S and
Cos scales are fundamentally C scales the user can readily de-
termine how to perform the division.)

Examples:
0.863 -+ j 0.834 = 1.20]44°
0.411 + j 1.128 = 1.20|70°

1.19 4 j 0.1462 = 1.20 7°

0.1253 + j 1.193 = 1.20 84°

EXERCISES
Convert the following phasors to polar form:
222. 0.863 + j 0.834 228. 0.834 + j 0.863
223. 78+ j4.5 229. 454378
224. 78 —j4.5 230. 45—j78
225. 0.01745 4 j 0.00976 231. 0.00976 4+ j 0.01745
226. 0.01745 — j 0.00976 232. 6.29 4 j 35.65

227. 35.65 + j 6.29
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Rectangular Phasor to Polar Phasor for Small and for Large
Angles. [n the foregoing problems the ratio X/R = tan © or R/X =
1/tan O is limited to the range 1.0 to 10.0, corresponding to angles be-~
tween 5.71° and 84.29°. It is important to extend the range toward 0°
and 90°. The slide rule user must be constantly alert for the following
CASEeS

When X/R < 0.1, the angle must be read on ST instead of on T.

When /X < 0.1, the angle must be read on Sec T (red) instead of
on T (red).

In cither case the magnitude of Z is taken equal to the larger of the
two components.

Example 1. 1.2 +j0.1047 = 1.2|_:5_‘-’

Here 6 = 5° is read from the ST scale since 0.0I1R < X < 0.1 R,
indicating that 0.01 < tan © < 0.1. The highest range of ST is from
0.01 to 0.1. For all values of 6 on the ST scale, the approximation is
made that sin O = tan 0. Therefore, Z cquals the larger component, 1.2,

Example 2. 1.2 + j 0.01466 = 1.2/0.7°

Here again 0.01 R < X < 0.1 R, hence the ST scale is read without
change of decimal point. This angle is near the end of what might be
called o tirst eyele over ST.

Example 3. 1.2 4 j 0.01047 = 1.2]/0.5°
1lere 0.001 B < X < 0.01 R. Hence O is read from the ST scale but

with the decimal point moved one place to left. This angle is in and
near the beginning of a sceond cycle over ST.

Example 4. 1.2 + j 0.001466 = 1.2/0.07°

This i= similar to example 3. The angle is in and near the end of the
second eyele over ST.

Example 5. 1.2 + j 0.001047 = 1.2{0.05°

Here the 8T seale decimal points will be moved two places to the
jeft. This angle is in and near the beginning of a third cycle over ST.

Example 6. 1.2 + j 0.0001466 = 1.2]0.007°

In this example the ST scale decimal points will again be moved two
places to the left. This angle is in and near the end of a third cycle

over ST,
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Example 7. 0.1047 4 j 1.2 = 1.2/85°

In examples 1 to 6, X < R, requiring the use of ST. Here X >R
which requires the use of Sec T (red). Angles are read without change
of decimal point when 0.01 X < R < 0.1 X. In example 7 the angle is
in and near the beginning of a first cycle over Sec T (red) approaching 90°.

Example 8. 0.01466 + j 1.2 = 1.2/89.3°

This is similar to example 7. The angle is in and near the end of a
first cycle over Sec T (red), approaching 90°.

Example 9. 0.01047 + j 1.2 = 1.2/89.5°

Here the hairline will be near the beginning of a second cycle over
Sec T (red). In example 7 we were 5° short of 90°. Here we are 0.5°
short of 90°.

Example 10. 0.001466 + j 1.2 = 1.2|89.93°

In example 10 the hairline will be near the end of a second cycle
over Sec T (red). In example 8 we were 0.7° short of 90°. Here we
are 0.07° short of 90°.

EXERCISES

Convert the following phasors to polar form:

233. 4,200 + j 183.2 237. 183.2 + j 4,200
234. 4,200 + j 18.32 238. 18.32 + j 4.200
235. 4,200 + j 1.832 239. 1.832 + j 4,200
236. 0.314 +3 9

For rectangular form to polar form for angles not in the first quadrant,
the reader should refer back to the corresponding problem in ¢onversion
from polar form to rectangular form. The angle 8 is to be found by the
method just developed. Inspection of the diagram will then reveal how
to find 6.

EXERCISES

Convert the following phasors to polar form:

240. 103.3 + j 194.2 242, —103.3 — j 1942
241. —194.2 + j 103.3 243. 194.2 — j 103.3



ANSWERS TO EXERCISES

Multiplication

e

7.25 Use D and CI seales, exereises 1 to 6.
4.48

20.8

3.45

2:3.4

30.5

25.8 Use DF and CIF scales, exercises 7 to 12,
1.967

75.2

68.2

46.6

32.3

108.7 Use D and CI seales or DF and CIF, cxercises 13 to 18.
224

1,990

605

8,370

4,050

Divigion

19,
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31
32.
33.
34.
36.

3.02  Use D and C seales, exercises 19 to 24.
2.89
2.84
23.3
23.4
4.48
4.27 Usc DF and CU seales, exercises 25 to 30.
8.14
0.0650
0.444
43.3
20.6
1.431 Use D and C scales or DF and CF, excreises 31 to 36,
1.670
2.11
0.840
7187
181.0
110

Products of a Series of Factors

37. 1214

38. 255

39. 5,520,000
40. 0.303

41. 0.506

42. 2.77

43. 0.611

44. 0.0608
45. 0.1644
16.  0.805

A Single Factor Multiplied by a Series of Numbers

47, 368; 774; 1,018; 1,440; 1,734; 2,200; 2,550; 2,580; 3.070.
48. 7.04; 3.34; 2.18; 1.718; 1.266; 1.120; 0.915; 0.820; 0.769.

Proportion
49. 3.48
50. 1.328
51. 3.97
52. 181.2
53. 6.09

Quadratic Equations

54, ~34.0 and —0.53
55. 19.5 and 1.64

56. 25.0 and —4.8
57. ~—23.6 and —-17.8
58. 6.6 and 4.55

Square Roots and Squares

59. 2.45
60. 5.196

61. 30.4

62. 35.57

63. 267.4

64. 905

65. 1,404

66. 7,140

67. 416

68. 51,100

69. 1,145,000
70. 15,730

71. 0.722

72. 0.00884

73.  0.0000578
74.  0.0000000246
75. 0.651

76. 0.2958

77. 0.0851

78. 0.003065
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Areas of Circles
79.  0.0492; 0.1105; 0.1963; 0.307; 0.602; 0.785.

Cube Root and Cubes

800 1817
N1 288
82, 6.46
83, 1.1.98
st 3007
85, 82.4
s6. 32.8
87. 6,900
88, 422,000,000
80, 0.684
90. 0.345
91. 0.1957
92. 0.0147

93, 0.0000167
94.  0.000000111

Powers of e

95, 148; 1.492; 1.030+4; 1.00804.
96, 0.0183; 0.407; 0.9287; 0.99442.

Reciprocals

97.  0.000117; 0.00133; 0.0156; 0.1175; 1.0515; 13.25; 178; 7,100.

Hyperbolic Functions
95, 0.201
09, 10.02

100. 1103

101, (L3366
102, 0971
103, 2,98
104, 0.59
105, 1.99
106, 0.78
107.  1.57
105, 031

Powers of Numbers
109, 1.00525

110. 11172
11l 607
112, 18.2
113, 0.09493
114, 0717
L5, 0.0058
116, 0.578
117. 0.0109
IS, 0421
11, 1087

120. 1.00915
112

Exponential Equations

121, 1.267
122. 3.62
123. 5.50
124, 4.74

Natural Trigonometric Functions

125. 0.970
126. 0.814
127.  0.266
128. 0.0157
129. 0.0673
130. 0.824
131. 0.264
132. 0.1132
133. 0.281
134. 1.163
135. 4.51
136. 8.85
137. 81.8
138. 358
139. 0.0419

Solution of Triangles
140. A =21.7°; B = 68.3% ¢ = 24.3".

141, a = 53.8; ¢ = 54.9'.
142. A = 25.6° B = 45.8° C = 108.6°

Complex Numbers

143. x = 9.87; y = 13.60.
144, x = 18.71; y = 9.54.
15, 16.6 eim24°,

([}

Applications to Civil Engineering

146.  (a) 10,200 cu. ft.; (b) 10,060 cu. ft.

147. 438.88 ft.

148. 243 ft.; N. 22.77° W.

149. 137.4 ft.

150. 220 ft.

151. (a) V = 95.2ft.; H = 526 ft:
(b) V =2781t.; H = 211 ft.
(¢) V =135.5ft.; H = 378 ft.

152. (a) R =848ft; D = 6.76° I = 14.1°.
(b) R =481 ft.; D = 11.94°; I = 17.58°,
(e) R =3731t.; D = 15.40° I = 9.47°.

153. (a) C = 5-214"; R = 73;".

(b) C = 11-6"; R = 1014".

(¢) C = 15-614"; R = 324",
154, (2) R = 10134".

(b) R = 1114".

() R =5%%"
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Fig. (a)—Stress A = 11,6604 Tens.; Stress B = 8,940¢ Compr.
Fig. (h)—A = 11,350/ Compr.; B = 11,550# Compr.; C = 11,550# Compr.;
D = 13,6804 Compr.; 1 = 8,030# Tens.; ¢ = 8030# Tens.;

90,6704 Tens.; H = 9,670# Tens.; I = 4,500# Tens.;

= 50004 Tens.; K =0; L =2640§ Tens.; M = 7,800 Tens.

R = 19.4504; Rp = 14,3304. Moments in foot pounds are 77,700; 129,300;
152,000; 134,900; and 86,000 at points 1, 2, 3, 4, and 5 respectively. Maxi-
mum bending stress is 16,9004 /sq. in. *

x = 940 in; . = 1,070§ /5q. in.; f, = 20,0004#/sq. in.

v = 6 (cosh 0.0195 X ~1); H = 316,0004; V = 343,000¢; T = 466,0004.

o= G804 S T pe = L6004 /=q. it

by

G
J

Applications to Mechanical Engineering

160.
161.
162.
163,
161,
165,
166,
167.
N
164,
170.
171.
172.
173.
174.
175.
176.
177.
178,
179.
150,

702 deg. IR

4.15 psia

$.68 peia

1.36

4-4.8 btu

481 I8

0134 btu/deg. R.
—51.1 btu

51.6 btu b,
—1.935 btu/deg. R,
230 psia

2520 btu/hr.

1520 btu/hr. It ft2
116 1, 02 1) 4 ft2
9GS I

2710 btu ‘hr.

13.25 i 1415 in.
103.6 in.%; 2,67 in.
2577 in.

147.7°; 2.58 radians; 734 1bs.; 438 lbs,
0.729 ft.; 727 it/min.; 0.0214 ft; 183 ft/min.

Applications to Electrical Engineering

1SL
152,
183.
184
185,
186.
187.
188,
189.
190.
101,
192.
193.
104.
105.
196.
197.
198.

12.2 ohms
0.0110 ohms
1,114,000 C.M.
300 watts

45.1 watts

300 ohrs

126.7 uuf

20:4.7 volts
0.99960

45,700 C.M.

3.00 d. b loss

47 d.h.

22.2 b, loss
1.84 (10) "1 amps.
6.75 (10) * amps.
4.90 (10)  amps.
1043 (10)~®
0.0339 amps.
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109,

221.
222

223.
224,
225.
226.
227.
228.
229.
230.
231.
232,
233.
234
235.
236.
237.
238.
239.
240.
241.
242,
243.

0.863 + j 0.834
7.80 4 j 4.50

7.80 — j 4.50
0.01745 + j 0.00976
0.01745 — j 0.00976
35.6 +j 6.29

0.834 4 j 0.863
4.50 +j 7.80

4.50 — j 7.80
0.00976 + j 0.01745
0.00976 — j 0.01745
6.29 4§ 35.6

4,200 + j 183.2
4,200 4+ j 18.32
4,200 + j 1.832
183.2 + j 4,200
18.32 + j 4,200
1.832 + ) 4,200
103.3 4 j 194.2
—194.2 4 j 103.3
~103.3 — j 194.2
194.2 — j 103.3
194.2 — j 103.3

1.2 |44°

9.0 |30°

9.0 |—30°

0.02 |29.22°

0.02 | —29.22°

36.2 |10°

1.2 [46°

9lo0°

9 —60°

0.02 60.8°

36.2 |80°

4,200 |2.5°

4,200 0.25°

4,200 [0.025°
9 [88°

4,200 |87.5°
4,200 |89.75°
4,200 [89.975°
220 |62°

220 |152°
220 |242°
220 [332°
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