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ARISTO triangular scales, with handle

Despite all their many conveniences, triangular scales have hitherto had
one disadvantage. When taken up, time is lost in turning the scale about
to find the required scale ratio. This difficulty ARISTO has now successfully R
overcome. s
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ARISTO triangular scales embody a continuous clip-on bi-coloured handle, L
by which the required ratio can be recognised at a glance. The smooth,
profiled handle covers the upper bevelled edge of the scale, which could
in use press uncomfortably into the hand.

ARISTO TZ-Liner

The practical drafting set square with unlimited possibilities of use. Made
in unbreakable, dimensionally stable, transparent ARISTOPAL. Graduations
in millimeters, normal to the hypotenuse and the 1 cm grid-net make simple
section lining, drafting of parallels, symmetrical figures, right angles, as
well as the plotting and measurement of cartesian coordinates. Scales of
angles available, divided in the 360° or 400° system.
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The slide ruie ARISTO HyperboLog 0971

The ARISTO Hyperbolog is a universal Loglog slide rule in which the system
of graduations includes the scales for the hyperbolic functions sinh and tanh. It
has been designed for the convenience of men who constantly use hyperbolic
functions in their professional work. Computations in high frequency and fele-
communication engineering, for example, can be performed with remarkable
facility, convenience and speed.

The slide rule ARISTO Hype-Log 0972

A double-face slide rule for mathematicians, physicists and communications
engineers.

In addition to the hyperbolic function scales Sh1, Sh2 and Th of the ARISTO
Hyperbolog, this rule has a scale Ch for hyperbolic cosines and two hyper-

bolic function scales H1 and H2 (r/1 + xz).

The trigonometrical function scales are supplemented by a Pythagoras scale P
and the Loglog scale by the sections LL0 and LL0o0.
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1. General introduction

in this instruction book information is given concerning the scales of the slide
rule, their range and purpose. Calculations are explained, together with the
interrelationships of the scales. To clarify principles involved, examples of use
are given for each scale, and guidance in arranging the most important factors
in complex formulae.

Expertise in slide rule manipulation comes with practice. Further exercises and
detailed explanations are to be found in the textbooks recommended:

Stender and McKelvey: The Modern Slide Rule
Ellis, J. P.: The Theory and Operation of the Slide Rule

1.1 Manipulation of the slide rule

When using the slide rule it is best so to hold it that the light, falling on the cursor,
does not throw a shadow of the cursor line. The most precise movement of the
slide results from pressure and counter pressure. The projecting end of the slide
should be held by the index finger and thumb, close to the body of the rule.
Movement of the finger and simultaneous pressure against the rule body achieves
the desirable smooth pulling and pushing aciion. The other hand holds the body
of the rule by the upper body panel, so that the thumb can be used to press
against the end of the slide.

Fig. 1

Setting the cursor is possible, using either hand, but is more speedily and more
accurately accomplished by using the thumb and index finger of both hands.
By lightly pressing the bearing edge of the cursor, opposite the cursor spring,
against the edge of the rule body, tilting the cursor is avoided and the cursor
hairline is maintained perpendicular to the scales.

r

1.2 Personal identification tab

In the case of the slide rule, under the ARISTO scale of preferred numbers 1364,
will be found a transparent insert, which can be used to identify ownership of
the slide rule. The card contained can be removed, after bending the transparent
flap upwards and the name of the owner of the rule can then be written on the
card.



1.3 Treatment of the ARISTO slide rule

The slide rule is a valuable calculating aid and deserves careful treatment. Scale
faces and cursor should be protected from dirt and scratches, so that reading
accuracy may not suffer.

It is advisable to give the rule an occasional treatment with the special cleansing
fluid, DEPAROL, followed by dry polishing. The use of chemical substances of
any description should be avoided as they may damage the scales.

Protect the slide rule from plastics erasers and their abrasive dusts, which can
cause damage to the ARISTOPAL rule faces. Do not place the rule on hot surfaces
such as radiators, or expose it to full sunlight. Deformation is likely to occur at
temperatures above 140° F (60° C). Rules so damaged will not be replaced free
of charge.

1.4 Removing the cursor at the slide rule 0971

The cursor lines are so adjusted, with reference to the scale pattern, that it is
possible, if convenient, to transfer work from one face of the rule to the other
during the course of a calculation. The cursor can be removed for cleaning
without upsetting this adjustment. On one face of the cursor, the glass is held
by four screws. On the opposite face, the glass is retained by two press studs
which enter the cursor bridge pieces. To remove the cursor, the cursor bridge
is pressed downwards at the points marked by arrow heads, with the thumb
nails, to release the press stud. The upper press stud is released by tilting the
cursor glass upwards.

Fig. 2

1.5  Adjustment of the cursor at the slide rule 0971

It is occasionally necessary, as when fitting a replacement cursor, to adjust the
position of the hairlines with reference to the scales. To do this, the rule is laid on
the table with the face of the cursor bearing the four screws, uppermost. After
loosening these four screws with a suitable screwdriver, the rule is turned over
and the cursor hairline accurately adjusted to the index lines e* and e~ in the
scales LL2 and LLo2. The rule is then very carefully turned over again, without
moving the cursor. Whilst holding the cursor firmly in place, the upper cursor
glass is set to the index marks 1 or 1000 of the DI and K scales. This done, the
four screws are firmly retightened.

1.6 Removing the cursor at the slide rule 0972

The cursor hairlines are so adjusted that transfer from one face of the rule to
the other is possible at any stage in a calculation. The cursor can be removed, for
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cleaning, without disturbing this adjustment — provided that the screw on the
cursor bridge piece is not lost.

To remove the cursor, hold firmly, with one hand, the screwed cursor bridge
piece. The other cursor bridge piece — that without the screw — can then be
released by a rotary movement of the screwed cleat and cursor glasses across
the face of the rule, as shown in fig. 2a. Cursor glasses and bridge pieces can
then be removed.

When replacing the cursor, take care to set it with the gauge marks kW and HP
over scales A and B. The sprung cursor bridge piece should then be brought
over the cursor glasses and the assembly closed by light pressure.
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Fig. 2a

1.7  Adjustment of the cursor at the slide rule 0972

After loosening the adjustment screw of the cursor, the rule should be turned
over so that the cursor hairline can be set to the auxiliary marks on the LL
scales. Without moving the cursor, turn the rule over again and place it on the
table. The now facing cursor hairline can be set to the right hand index marks
of scales A and D. This done, the adjusting screw can be re-tightened.

1.8 Working diagrams used in the solution of examples

in what follows a method of representation will be used to show, in a form more
easily followed than in the more usual slide rule diagrams, the process of solution
and sequences of setting. The scales are represented by parallel lines, at the
ends of which the scale identifications are given. The undermentioned symbols
aid interpretation of the diagrams.

Initial setting o) v
Each subsequent setting Y
Final result ®
Setting or reading an intermediate result ®
Reversing the rule '><'
Arrowhead showing sequence and direction . 4
of movement
Cursor line shown by a perpendicular. Fig. 3
7



2. Scale arrangement

THE SLIDE RULE ARISTO HYPERBOLOG 0971

The Loglog face LLot Loglog scales, range 0.99 to 0.9 e—0.01x
LLo2 0.91 10 0.35 e—0.1x le bod
LLo3 0.4 1010-5 e x on rule body
DF Folded scale ax
CF Folded scale ax
CIF  Reciprocal scale of CF tax
L Mantissa scale lg x on the slide
Cl Reciprocal scale of C 1/x
C Fundamental scale X
D Fundamental scale x
LL3  Loglog scales, range 2.5 to 105 ex
LL2 11 to 3.0 e0.1x on rule body
LL1 1.01 to 1.11 g0.01x
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Fig. 4 Loglog face

Scale of hyperbolic tangents for arguments from 0.1 10 3.0 < tanh
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Scale of cubes
Scale of squares

Scale of squares

Scale of tangents and cotangents

Scale of small angles in radi
Scale of sines and cosines
Fundamental scale

Fundamental scale
Reciprocal scale

Scale of hyperbolic sines for arguments from 0.85 to 3.0

X On rule body
x2

-—

%2
4 tan
J arc
g sin
X

ans On the slide

X
;:/Xsinh On rule body

01 to 0.9 & sinh
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Fig. 5 Hyperbolic face



) THE SLIDE RULE ARISTO HYPERLOG 0972
The Loglog face LLoo LogLog scale, range 0.999 to 0.989 e—0.001x
LLot  Loglog scale, range 0.99 to 0.9 e~0.01x
LLo2 Loglog scale, range 0.91 to 0.35 e—0.1x On rule body
LLo3 Loglog scale, range 0.4 to 10-5 e X
DF  Folded scale ax
CF Folded scale T X
CIF  Scale of reciprocals of CF 1) x
L Mantissa scale Ig x On the slide
Cl Scale of reciprocals of C 1/x
C Fundamental scale X
D Fundamental scale X
Ltsa Loglog scale, range 2.5 to 105 eX
LL2  Loglog scale, range 1.1  to 3.0 e0-1x On rule body
LL1  Loglog scale, range 1.01 to 1.11 0-01x
LLo  Loglog scale, range 1.001 to 1.011 0.001x
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Fig. 6 Loglog face

The hyperbolic face H2 Hyperbolic scale, range 1.4 1010 1/1 + x?
Sh2  Scale of hyperbolic sines, range 0.85 to 3 J sinh
Th Scaie of hyperbolic tangents, range 0.1 to 3 < tanh On rule body
K Scale of cubes x3
A Scale of squares x2
B Scale of squares x2
T Scale of tangents and cotangents for angles of 5.5° to 45° J tan
ST Scale of tangents, sines and radian measure for angles  of 0.55° to 6° 4 arc On the slide
S Scale of sines for angles of 5,5° to 90° 4 sin
P Pythagoras scale range 0 to 0.995 ]/1 —x2
C Fundamental scale X
D Fundamental scale X
Dl Scale of reciprocals of D 1/x
Ch Scale of hyperbolic cosines range 0 to 3 X cosh On rule body
Sh1  Scale of hyperbolic sines range 0.1 to 0.9 < sinh
H1 Hyperbolic scale range 1.005to 1.5 1/1 + x?
”
H2 o VT )
; ! 0
v ol <cotatan
o Ao ore
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Fig. 7 Hyperbolic facs



3. Reading the scales

To use the slide rule efficiently for rapid calculations is essentially a matter of
learning to read the scales quickly and correctly. The figures 8—11 show examp-
les referred to the most frequently used fundamental scales C and D. The prin-
cipal intervals, marked by long strokes, are figured from 1 to 10 (fig. 8). The
end mark 10 is, on the trigonometrical face, repeated as 1, because this gradu-
ation can be regarded as the beginning of another and identical scale.

1 2 3 4 5 6 7 8 91
L 1 i 1 I | 1 | L
Fig. 8 The main intervals

In the range between figured graduations 1 and 2 the scale resembles the gra-
duation of a millimeter scale, the difference consisting only in the reduction of
interval width, progressively from left to right and in the use, on the slide rule,
of the initial mark 1 in place of 0.

1007 1095 l2|20 1355 1573 1847
R N T A e R R ey T T TV TP OOT T AECITIIN
] 11 14 15 16 17 18 19 2
Fig. 9 Reading in the range 1 t0 2
The graduation marked 2 of a millimeter scale can be considered as indicating
2cm, 20 mm, 0.2 dm, 0.02 m and so on. In other words the dimension, marked 2,
can be thought of in association with various powers of 10. Similarly, the figures
on the slide rule scales are independent of the position of the decimal point. It
is therefore advisable to read a series of figures without regard to the decimal
point, expressing them as simple numbers, e. g.,1—0—4 and not as one hundred
and four. This will avoid omitting figures. For practice, move the cursor slowly
to the right, from the valve marked 1 and read at each graduation line the
series of numbers: 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112,
113, etc.
The cursor hairline is so thin, by comparison with the width of the intervals, that
the midpoint of a subdivision (between two graduations) can easily be located.
Indeed, smaller fractions of subdivisions can be distinguished by eye. With
practice, even one tenth of a subdivision can be estimated and thus the fourth
digit obtained.
For practice, move the cursor slowly still further to the right. Between the gradu-
ations 1310 and 1320 estimates can be made, e. g., as 1310, 1311, 1312, 1313,
1314, 1315, etc.
Between a numbered graduation and that immediately following it, especially
at the beginning of the scale, observe that a zero is to be read, e. g., 1000, 1001,
1002, 1003, etc. (note 1007 in fig. 9).

203 2155 235 283 302 3495 379
RN R AR Ry E R Y R ey e Iy EEV NPT TR TR THIT TR L TP
25 n 35

2
Fig. 10 Reading in the range 2to 4

Because the intervals to the left of the figure 2 are already very narrow, in the
following range between figures 2 and 4, only every second interval is marked.
This yields a new graduation pattern, in which from mark to mark the even
values are to be counted off: 200, 202, 204, 206, 208, 210, 212, 214, etc. The mid-
points of the intervals give the odd numbers: 201, 203, 205, 207, 209, 211, 213,
efc. Fig. 10 shows some examples.

4075 47 5225 61 495 75 80 946
UL UL i |111|?|||||l||m|||||ui1||||||ll|||||||§|lma||||i:|x||||||[l|:||mlll|||||||||||n[|||||‘||||||||[||
4 5 6 7 8 9 10

Fig. 11 Reading in the range 4 to 10
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In the range 4 to 10, the intervals are marked in subdivisions of 5 units and the
successive graduations are read as: 400, 405, 410, 415, 420, 425, 430 etc.

Intermediate values must be estimated. Midway between the marks 400 and 405
is the value 4025; a little to the left of this the value 402, a little to the right 403.
In like fashion, at the midpoint of the next pair of subdivision marks is found the
value 4075. Fig. 11 shows a series of such points.

4. Making approximations

It was explained, in chapter 3, that when using the slide rule, numbers are set
or read as a simple series of digits. The correct position of the decimal point is
determined by approximation. By this means, a check is at the same time
imposed on the order of magnitude of the slide rule resuit.
Rules for approximation:
Values strongly rounded off!
Examples: 3.43 = 3 9.51 =10 7.61 =8
When multiplying, round up one factor, réund down the other!
Examples: 892 x 127 =10 x 120 = 1200

219 x 9830 = 2 x 10000 = 20000
When dividing, simplify!
Numerator and denominator are rounded off in the same direction.
725_7.25~7_14 h
539 539 5 U
640 x 15.3 60 x 20
51 x 08  5x 1
Very large or very small numbers are simplified by separation of powers of 10.
Examples: 73215 = 7 x 104 0.0078 =~ 8 x 103

89 =~ 9 x 101 0.706 =7 x 10-1

Separation of powers of 10, when multiplying or dividing with very large num-
bers, gives a clearer appreciation of quantity.

Examples:  0.07325 x 0.000513 =8 x 10 2 x 5 x 10" 4 =40 x 10 ¢ =4 x10~5
2950 3 x 103
0.00598 6 x 103

Examples:

= 240

=0.5 x 106

5. The slide rule principle

Calculations are carried through by the mechanical addition or subtraction of
scale lengths. The process can be very simply explained by considering two
abutting millimeter scales, sliding one upon the other. Fig. 12 shows the example
2 + 3 = 5. If theinitial mark 0 of the upper scale is moved over the value 2 of the

3
0 1 2 3 4
Illllllllll“lllllllllllllllllllllIIlllll
IHIIIIIII|IIII|IIIIIIIII||lII|IlII|lllllllll|lllll
0 1 2 3 4 5
k '
2
I -

5

Fig. 12 Graphic addition by use of two ordinary scales
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lower scale, then immediately under 3 of the upper scale is found the sum 5
on the lower scale. In addition the sum 2 + 1 = 3 or 20 + 15 = 35 can be read
from fig. 12, if the millimeters are counted off.

The subtraction 5 — 3 = 2 can also be read from fig. 12, by reversing the process
described above. From the length 0 — 5 on the lower scale the length 0 — 3 on
the upper scale is subtracted by setting the values 3 and 5 of the upper and lower
scales, respectively, the one over the other and reading the result 2 from the
lower scale under the initial mark 0 of the upper scale.

In the slide rule the graduations are disposed upon a rigid rule body and on a
slide moving therein. The scales of the slide rule are, however, logarithmically
divided and so the addition of two scale lengths performs a multiplication and a
subtraction of two lengths carries out a division.

6. Multiplication

(Two scale lengths are added.) EF v @l“ s

The initial value 1, the left hand index c::F e E

of scale C of the slide, is brought over nx

the value 18 on scale D. By moving the L lo x
cursor to the value 13 on scale C we ¢i -,"-
add the length 13 to the length 18. The 8 ' 13 0285 x
18 234 513 X

product 234 can be read under the
cursor hairline on scale D. The position i

of the decimal point can be located by ~ Fi9- 13 }g x ’8255 = 23;13
an approximation, (20 x 10 = 200). 18 x 7.8 = 140.4

To read the product of 18 x 7.8, the slide would have fo be traversed, that is,
the terminal index 10 of scale C would be brought over the factor 18 on D.
With the ARISTO Hyperbolog and ARISTO HyperLog, this additional slide setting
can be avoided, if the upper pair of scales CF/DF is used for the multiplication.
Scales CF and DF make this simplification possible, because they are a repetition
of the fundamental scales C and D, with the difference that the initial index 1,
is placed approximately in the middle of the rule. If, for example, the value 1 of
scale C is placed opposite 18 on scale D, the upper scale pair will show an
identical setting, i. e., 1 on scale CF beneath 18 on DF. Multiplication by the
factor 18 can be carried out on either scale pair. The product 18 x 7.8 can be
found on scales CF/DF by moving the cursor over 7.8 on scale CF and reading
140.4 on scale DF.

7. Division
(Subtraction of one scale length from another. This is the reverse of
multiplication.)

-—v
The cursor hairline is brought over the o it
value 2620 on scale D and the value g 1
17.7 on scale C moved under the cur- nx
sor line. The two values are then in L lg x
juxtaposition, The quotient 148 is read  Cl {-
on D under the left hand index of C of 8 g' 177 x
the slide. In other cases, the quotient 148 §Z“° x
may be read under the right hand Fig. 14 2620 = 17.7 = 148

index of the slide. Roughly: 3000 ~ 20 = 150

Naturally, over 1 on CF the quotient can be read on DF, because the divi-
sion 2620 = 17.7 has also been set on this scale pair. In division with scales
CF/DF, the factors are in the same relative position as written in a vulgar fraction.
The slide setting is identical with that for the multiplication 148 x 17.7 = 2620.
The difference between multiplication and division consists only in the order of
setting and reading. After setting up the division, the quotient will in any case be
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read on the body scale, under the left hand or right hand index; slide re-setting
will not be necessary. This characteristic feature will be used in the following
chapters.

8. The folded scales CF and DF

In graduation pattern, scales CF and DF are identical with the fundamental
scale C and D, but are laterally displaced, with respect to the fundamental
scales, by the scale length corresponding to the value of 7 = 3.142. The value
figured 1, of these folded scales lies near the middle of the rule, producing an
overlapping of the fundamental scales by half the rule length. The two pairs of
scales, C/D and CF/DF, constitute a working assembly achieving advantages
in multiplication, division, tabulation and proportion problems.

Index 1 of scale CF stands opposite, on DF, the same value as is matched with
index 1 or 10 of scale C on D. Any of the multiplications discussed earlier can
be begun on the scale pair CF/DF, with advantage, since the initial setting can
always be chosen at once. It is not then necessary to decide whether the initial
or final scale index should be used. If a division is set with the upper scale pair,
the numerator and denominator are in their customary relative position, with
the parting line between the scales corresponding to the division line in the
fraction as written.

If the result of a problem cannot be read from one scale pair, it is always possible
to find it from the other pair and slide re-setting is avoided. The yellow strips
on the slide are a reminder that factors taken on the moveable slide scales C or
CF yield results to be read on D under C or on DF over CF,

84  Tabulation without slide re-setting

y =29x

>
x | 17 | 345 | 50 | 10 i R %
y | 493 ] 100 | 145 | 290  ©* A=
L Igx
Ci _1.
For x = 5 the upper pair of scales CF ¢ \ 7 45y
and DF provides the answer without D 29 ©433 o0 X
slide re-setting. .
Fig. 15
L i 4 L 4
8; I} Tx
1.567 1!‘:
CIF :
28.2 1 nx
y = = 28.2 x — L Ig x
X x o 1
1 743 292 X
X l 7.43 | 2.92 l 1.567 8 92“ ?1795 -
y | 3795 | 9.66 | 180 , -
Fig. 16
L Zaad
BF 616 nx
F N2 nx
x 1 CIF %i
V=182 T 182 % L o x
Cl .l.
x | 3.17 ‘ 1121 g 82 g x
1 0r74z x
y | o172 | 616 )
Fig. 17
15



8.2 Direct reading of products and quotients involving n

A further advantage issues from the displacement of scales CF and DF by the
value 7w = 3.142. By switching from D to DF or from C to CF, multiplication by =
is performed automatically. Conversely, a division by = is accomplished by
changing from DF to D or CF to C. If, for example, a diameter d is set with the
cursor on D, the circumference 7 d can be read at once on DF. Similarly, the
angular velocity w = 2z f is found on DF when 2 f is set on D.

The possibility of taking the final

reading by switching scales should F T T xx
always be considered when dealing i3 War — @y @ ()9 nx
with problems involving the factor n.  CIF o BOLL < v A
Fig. 18 shows a range of results in- 1o x
corporating 7, demonstrating the pos- . . 1
sibilities of a single cursor setting. c Va b Ren T @ma X
Compare with section 24.1, for work § e len Q% X
with the factor 360.
Fig. 18 Calculations with n
9. Combined multiplication and division
In solving expressions of the form -
X b
d c the rule to apply is: oF xx
CIF .
First divide, then multiply. L g x
The intermediate result of the division Cl -,',-
of 345 by 132 in fig. 19 need not be g ! 132 2 x
761 3465 575 X

read. The slide rule scales are position-
ed ready for the final multiplication. Fig. 19

The cursor is moved over the value 22 345 x 22
on scale C and the result read on scale 32 - 51.5
D, viz. 57.5.

viz Roughly: %——;2—9 = 60

If, in this example, the further factor 19.5 is introduced, we have
345 x 22
132 x 19.5

The solution obtained in fig. 19 is divided by moving the value 19.5 on scale C
under the cursor hairline, thus dividing 57.5 by 19.5. Should there be, in examples
of this type, yet more factors in numerator and denominator, simply divide and
multiply aiternately. The rhythmical alternation between slide and cursor posi-
tioning leads to smooth flowing calculation with minimal setting.

In such problems, it can happen that the slide, following a division, projects too
far out of the rule body to permit a setting. To perform multiplication, the slide
must be traversed. By careful choice of setting for division, between scales C/D
or CF/DF, the necessity for slide traversing can often be avoided.

= 2.95

10. Reciprocal scales Cl and CIF

Scale Cl is divided exactly as are the fundamental scales C and D, but the inter-
vals progress in the opposite direction, i. e., from right to left. To obviate errors,
the figuring of the graduations is in red.

If the cursor is set to any value x on scale C, the reciprocal 1/x can be read from
Cl, as indicated by the scale identification symbol at the right hand end of the
scale. Over 5 on C is 1/5 = 0.2 on Cl. Of more importance, however, is the fact
that the reciprocal scale can be used in the reverse direction. By switching
from Cl to C we find, e. g., under 4 on Cl the valve 1/4 = 0.25 on C.
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The occasional use of scale Cl to find reciprocals would not justify its provision;
its real value lies in the fact that it can be used to avoid many settings in complex
examples.

4 can b itte 4 X ! dé x 5asit ivalent 4

— can be written as —and 4 X 5 as its equ —

5 5 9 175
Whilst these expressions are perhaps unusual, they offer the advantage, for
slide rule working, of converting a division into a multiplication or, conversely,
a multiplication to a division. The valuve of this will best be shown by a “‘game”
with simple numbers:

1. With the cursor set to 6 on D, bring
2 on C under the hairline. We then T

have the usual setting for the division a -— '!lt'
of 6 by 2 (fig. 20). If however, the cur- § g‘ éé X

sor is left in place and by a movement

of the slide, 2 on Cl is brought under  Fig. 20

the hairline, we have the multiplication

6 x 2 and read the product, 12, as for 1

a division, under the index of the slide a PE—— } x

(fig. 21). Actually, we have found the g %:z 5 x

quotient of 6 =~ 0.5, because simul- 9

taneously with bringing 2 on Cl under  Fig. 21

the hairline, the reciprocal 0.5 on C

was set to the cursor. c T : 1
2. Now, letting the index 1 of C re- cl sy Y ‘ :
main over 12 on D, move the cursor D 12 a8 x
to 4 on C, establishing the normal Fig. 22

setting for the multiplication 12 x 4 =

48 (fig. 22). By moving the cursor to 4

on Cl, however, we can read the quo- ¢ ; .}
tient of 12 = 4 on D. i. e., 3. (fig. 23). ¢ , — T x

In other words, because under 4on Cl D 8 x

stands its reciprocal 1/4 = 0.25 on C, Fig. 23
we actually calculate 12 x 0.25 = 3. ’

Thus there are two setting possibilities in multiplication and division and the
experienced operator will chose the best, in the solution of a complex example
by alternate division and multiplication.

The stated relationship between scales C and Cl holds similarly between scales
CF and CIF. To show that this is so, the ““number game’” can usefully be replayed
with the scale group CF/DF/CIF. Anyone who thoroughly studies the foregoing
will at once recognise that scale CIF is the logical complement of the scale system.
Whoever properly exploits the advantages of the folded scales will use scale
CIF as often as scale Cl.

Expressions of the forma X b x cor

i tc. will be solved v
P x < xd etc. wi e solved by 8; 1054 x
T s go.ss nx
alternate multiplication and division, o A
as shown in section 9 on combined nx
multiplication and division. In the L ‘o x
course of the calculation with scales C, ¢l 3 -}
D and Cl switching to the scale group S ? x
X

CF, DF and CIF will avoid slide tra- 9‘“
versing in multiplication. Fig. 24 185 x 6 x 0.95 = 1054
In the example of fig. 24, the factors Roughly: 200 X 6 X 1 = 1200
185 on scale D and 6 on scale Cl are

set in opposition, as for a division. Multiplication by 0.95 is then carried out with
the upper scale CF and the result 1054 read on DF over 0.95 on CF.
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10.1  Reciprocal scale DI

This scale of reciprocals, DI, enables the experienced slide rule user, on occasion,
to switch from body- to slide scales; for example, when working with proportions.
Practice with simple multiplication and division, using scales C and DI, is recom-
mended.

11. Proportions

. a c e . .
Proportions of the form P=gd=F = -ore particularly simple to calculate

with the slide rule because, after setting one ratio, all other equal ratios can be
found by moving the cursor. The parting line between body- and slide scales
can be regarded as the line in a common fraction, as written. Proportions should
preferably be expressed in this form.

Example: 9.51b of a given material cost § 6.3. What will be the cost of 8.4 Ib?
The solution by “rule of three” follows from % X 8.4 = 5.57

The calculation can be more conveniently made if the ratio of weight and price
is set up as a proportion. If the given

weight on DF is brought over the

corresponding price $ 6.30 on CF, all 8F 8.4 §9.5 810.6 nx
equivalent weight/price ratios will be  “F 557 6.3 703 nx
shown on scales DF/CF and D/C. On  ©F nx
scales DF and D are all weights, in L Ig x
accordance with the initial setting and _,1‘_
on scales CFand C are the correspond- N 252 (9066

ing prices. Opposite the weight 8.4 |b 8 _%%s___ 38 T H
is found the price $5.57. Other -

weight/price relationships are shown Fig. 25 Proportion

in fig. 25.
10.6 |b cost $ 7.03 (scales CF/DF)
3.8 Ib cost $ 2.52 (scales C/D)
2.8 |Ib cost $ 1.86 (scales C/D)
1 Ib cost $ 0.66 (scales C/D)

The proportion can be extended at will:
Ib 95 8.4 106 3.8 28 1

Calculation by proportions proceeds independently of the earlier mentioned
rule. It is of no consequence, when and how the weight/price ratio is set up,
the only difference arising is that weights are looked for on the scale on which
the first weight was set and the corresponding prices on the adjacent scale.
In the example above 6.3 could have been set on scale DF and 9.5 on CF. The
price 8.4 would then be found on CF and the required proportion read on DF,
as 5.57.

This principle of direct proportionality, a: b = c: d, applies with equal force
to indirect proportion, which leads to the identity a x b = ¢ x d, to be solved
with the aid of the reciprocal scales. Finally, the principle can be seen applicable
to the “‘mixed’’ proportionsa X b=c:danda:b =c x d.

12. The scales A, B and K
if the cursor line is brought over any value x on scale C, the value x2 can be

found on scale B (the scale of squares) or x3 on scale K. Conversely, the square
root or the cube root can be obtained.
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3 b d

2 _ 3 _ v
Q 2=4 P =8 3 T.,, Tos Do,
b) 32.72 = 3.272x 102 = 1070 A * la &er Qs )
32.73 = 3.273 x 10% = 35000 T x Io
ST ; — . arc
; ; s —1 1
¢ V9 =3 V27 =3 b L Woe
C i x
2 3 D 7 T 337 YT*
— — Y
d) V51 =7.14 V364 = 7.14 Fig. 26 Powers and roots

The position of the decimal point is best found by approximation. In calculating
powers and roots it is of advantage to work in powers of ten, o obtain numbers
in which the position of the decimal point is easily seen. To this end, the scale of
squares is figured 1 to 100 and the cube scale 1 to 1000. The range in which the
cursor is to be set follows from the figuring of the scale.

Examples:

V3200 = V32 x 100 = 10 x |32 = 10 x 5.66 = 56.6 Separating factor 102

s Jams 1 S ;
= /=2 = — x V181.3 = — x 5.66=0.566 S ting factor 10

/0.1813 To00 = 70 X V1813 =15 % eparating fac

12.4 Calculation with the scales A and B

Scales A and B, like the fundamental scales C and D, are identically divided,
with the difference that they consist of two scale segments, each half the length
of the fundamental scales C and D. The left hand segment is figured 1 to 10 and
the right, 10 to 100. All examples so far discussed can be solved with the scales
A and B, by methods described for the fundamental scales. The reading will be
somewhat less, because the graduations are disposed over only half the length
of the rule.

The adjacent scale arrangement offers the great advantage that slide re-setting
is no longer a necessity.

In many cases it is convenient, if a problem begins with a squared factor, to
continue the calculation on the scale of squares.

13. The Pythagoras scales
(ARISTO HyperlLog only)
13.1 Scale P

In a right triangle, with hypotenuse 1,
the Pythagoras relationship with the 1 y
other two sides holds.
y = ]/1 — x?
For any setting of x on the fundamental x
scale D we find the value of y on scale Fig. 27

P and, conversely, x = 1/1 —y2onD
if y is set on P. In the example of fig. 28
it is clear that 0.6 could equally well be P zoe [OIT3 AR

set on D or on P. In either case the
required value 0.8 is found on the g
corresponding adjacent scale.

The choice of initial setting should  Fig. 28 Vi —06=038
be made with due regard to maximum

06 0.8

x %
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accuracy of reading. In the example
/1 — 0.152 = 0.9887 the factor 0.15
% (BT
1 X

e

will be set on C. P

Y
The relationship holds only for the ¢ ‘ ViTyi
given range in scale P. Should scale DI © VS T
project too far, the alternative re- ©

lationship shown in fig. 29 will apply.

3¢ paa 2

Scale P simplifies, in conjunction with
scales C and S, the conversion

sin < » cos, because in right triangles

sin? o + cos?a = 1.
The trigonometrical solution is often 1
more elegant — (see section 16). y
Example in electrical engineering:
apparent load 1.0
effective load = 0.85 Fig. 30

0.85

wattless load 2 /1 — 0.852 = 0.527

To achieve greater accuracy ip calculations with the scales of squares, re-
arrangement of the data is useftl. For example:

V0.91 = V1 — 0.09 = 0.9540

The factor 0.09 is taken on the left hand portion of scale A. On D is then found

/0.09 = 0.3 and the value of ]/1 — 0.32 = 0.9540 is seen on P. Greater accuracy

is obtained, in this way, for roots greater than about Y0.65 and is always
convenient when the radicand is close to 0.01, 1, 100, etc.

13.2 Scales H1 and H2

The two part scale H, identified as scale ]/1 + x2 at the right hand extremity has,
like scale P, a direct relationship with fundamental scale D. With x taken on

scale D, the value of y = ]/1 + x2 is found at once on scale H. Conversely,

when y is set on scale H, we read the value x = ]/y2 — 1 on scale D. Scale H1
covers the range 0.1 to 1.0 on D whilst H2 has values corresponding with 1 to 10.

The relationship between scales H1 and H2 with scale P enables Pythagoras
calculations to be solved:

) / [ b\2
With scales H1 and H2: ¢=a- |/ 1 + (;—

/
2
c
In section 19.2 will be shown a further application of these scales in association
with scales Sh1 and Sh2, based on the relationships:

With scale P: b

cosh x = ]/1 + sinh2x  and sinhx = ]/cosh2 x — 1

Reference is made also to the identity seca = ]/1 + tan? o Except for a change
of scale identifications, scales H and D show in opposition coordinate values

y = sz —1and x = ]/1 + y2 of the unit hyperbola x? — y2 = 1.
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14. Trigonometrical functions

All angle functions are referred to the fundamental scale D and the angular
scales, in the 360° system, are decimally divided.

If an angle is set with the cursor on scales S or T, the corresponding function
value can be found under the cursor line on scale D. Conversely, for a function
value set on scale D, the corresponding angle can be read on scale S or T.

The figuring of the decimally divided scales S and T applies uniquely to the
inscribed angle values.

The slide rule gives the function value for angles in the first quadrant only. The
relationships for any angle, with those of an angle in the first quadrant, are
tabulated below.

+ 90° + o 180° + o 270° 4 «
sin + sina + cosa F sina — cos o
cos ~+ cos o ¥ sin\oc — cos o + sino
tan + tan o F cota + tan o F cota
cot + cota F tana + cota F tan o

141 Sine scale$

The scale of sines S is figured between

5.5° and 90° in black and also in red T v 9 v
from right to left, for cosines between 2 4
0° and 84.5°. All sines and cosines read | ~ctan
on D are prefixed with 0 before the st —carc
:eCImaII pom;. in 30° 0.500 s 75%ed) (260 aoe 42.8%ce8) o i
xamples: a) sin =0. Do.438 B0.500 Gro.

b) sin 26° — 0.438 S Qo ®oun B0s0 @oan

c) cos75° = 0.259 ) . . .

d) cos42.8° = 0.733 Fig. 3t Sine and cosine with 0971

14.1.1 Sines of angles a > 45°
(ARISTO HyperLog only)

are read with enhanced accuracy on the red figured scale P, using the identity

sino = ]/1 — cos? «. To set the angle, the red figures of scale S are used, hence
the colour rule for sine functions: set and read sine functions in like colours.
For cosines of angles « < 45° an
analogous colour rule follows from

cos o = ]/1 — sin? . For every setting  $
on scale S read in the contrasting f
colour the function value on scale D ¢
or P. 0
Examples: Fig. 32a Sine with 0972
sin 26° =0438
sin 822 =71 — cos282°
= 0.9903
arcsin 054 = 32.7° 8 Qs f;:’.;‘.
cos 75° = 0.2588 P Vit
cos 7° = ]/1 — sin27° s H
= 0.99255

arc cos 0.9852 = 9.87° Fig. 32b Cosine with 0972
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142 Tangentscale T

The scale of tangents is figured, in black, from 5.5° to 45° and counter-clockwise
in red from 45° to 84.5°. Angles read in black have function values, prefixed
by 0..., onscale C.

As tan « = 1/tan (90° — «), function values for angles oo > 45° in red figures
can either be read on scale Cl or, by putting the slide in the “*neutral’ position,
on scale DI. The scale of reciprocals therefore covers the range tan 45° = 1 to
tan 84.5° = 10.

Examples: T T T o

A

tan 14° = 0.249 B . Qe . 5
tan 23.6° — 0.437 T neeQue (s 3 08
tan 41.1° = 0.872 ST < arc
tan 51.2° = 1.244 S <3 sin
tan73.4° = 3.35
tan 81.4° = 6.61

arctan 1.75 = 60.25°

arctan 2.0 = 63.43° . .

gy Fig. 33 Tangent and cotangent

cot 9° = 6.31 T . -
cot 14° = 4.01 a i:n‘ - r~LLlos———a-*
cot 23.6° = 2.289 T """"’2nn v/ DFE_ | ax
cot 41.1° = 1.146 o geot V) g:;-' __4__’:"
cot 51.2° = 0.804 <arc Y %
cot 68.25° = 0.399 S — 3 B L

cot 77° 0.2309 Py /0 O wE
c .S \\_- x
arccot 2.0 = 26.57° e T. x o f x

arccot 1.75 = 29.74° Fig. 34 Reading tan 81.4 on the scale Ci

Values of cotangents are read as reciprocals of tangent values, using the identity
cot o = 1/tan «. Thus we find cotangent values of angles < 45° on scale Cl or DI
and those for angles > 45° on scale C. Note: Like colours for setting and
reading give tangent values, unlike colours the values of the cotangents.

15. Scale ST

This scale is an extension of scale S and T for angles, the function value of
which is between 0.01 and 0.1, read on scale C. It provides, at the same time
by going from scale ST to C, for the important task of conversion between
circular and radian measure.

If sin o and tan « for o < 5.5° or cos x and cot « for « > 84.5° are to be found,
use the relationship:

sino == tan o = cos (90° — o) = cot (90° — &) = 11%0@ == 0.01745 o
Scale ST is figured between 0.55° and é° but is subdivided in radian measure.
This makes possible accurate reading on scale D in radians for sine and tangent
functions of small angles. The red figuring of scale ST, from right to left, between
84° and 89.45° enables the scale of small angles to be used for the cosines and
cotangents of large angles.

The agreement in value between sin x, tan «, and arc« is very good up to 4°
for example sin 4° = 0.0698, tan 4° = 0.0699, and arc 4° = 0.0698. For larger
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angles between 4° and 6° more accurate values can be obtained from the

relationship:
sin 6° tan 6°

sinoc=ocx—-60 or tan x = 2 X e

154 Small angles — large angles

A few examples of these approximations will be useful exercises in the appli-
cation of the function scales:

Examples:

in 6° tan 6°

sin 4.7° = 4.7 x 2= = 0.0819 1an4.7° = 47 X g = 0.0822
H L] ' 60

sin 5.3° = 5.3 x S”;:’ = 0.0924 an5.3° = 5.3 x i = 0.0928

Values coso for o < 5.7° and sinux for o > 84.3° can only be read rather
inaccurately from the rule. In such cases, the first term of an expansion provides
a helpful approximation: L

2
cosa =1 — —2——(a in rad)

Example:
A x
2 ‘1
cos 1.5° =1 — 0.0:62 ? oo :ttm:
co'
ST ; ‘<): arc
1 0.000686 . Qs < sin
2 < cos
=1 — 0.000343 . So_x
= 0.999657 o *

Fig. 35 cos 1.5° = 0.999657

To find the second term of the expansion the angle 1.5% on scale ST is set with
the cursor. On scale C is then the radian measure of the angle and on scale B
the square of this value, i. e., 0.000686. Division by 2 is done mentally. Finally,
the subtraction is performed.

0.06112

= 0.99813
7 0.998

Example: sin 86.5° = cos 3.5° = 1 —

15.2 Conversion circular «-» radian measure

Conversions between circular and radian measure involve the relationship

o 180°  360°

b =z 2a
and are obtained by a cursor setting only, because scale ST is a fundamental
scale laterally displaced by 180/7. For any angle on scale ST, the radian measure
is read on scale C, beginning with 0.0 . . . Opposite 1° on scale ST stands 0.01745,
i. e., /180, on scale C. Conversely, for any value in radians the angle can be
found. This holds, not merely for all angles marked on scale ST but also, because
the ST scale is decimally subdivided, for all angles — 1 can be read as 0.1°,
10° and so on. In consequence, it is only necessary to change the position of the
decimal point in the figures for radian measure (see fig. 36).

Examples: ot qT)" gso. e
a)  0.1° = 0.001745 rad s g
b) 10° =04745 rad p —
C 0.01%5 ®)0.8725 ®
) 5 =008725 rad o —?——‘i_‘—x
a) 50° =0.8725 rad Fig. 36
23



If the small angle is given in seconds or minutes, first convert to a decimal
fraction of a degree: 1’ = 1/60° and 1" = 1/3600° (see also sections 15.3 and
24.1). By sefting 6 or 36 on scale DF to 1° on scale ST, a proportion is conveniently
established for all such conversions.

15.3 The marks ¢’ and ¢”’

These gauge marks simplify conversion when the angle is given in minutes or
seconds of arc. They indicate the factors:

o = ﬂ x 60 = 3438 for minutes
T
= 180 x 60 x 60 = 206265 for seconds
Hence, converting by division: arca = ?—j—, = %
}
For example:
22’ w
arc 22 = —- = 0.00640 rad T < tan
Q < cot
400 ST S are
arc 400’ = —— =01163rad s sn
177 S o
(7 c .
arc 17 = — = 0.0000824 rad ¢ §;z, 8 s
380" Fig. 37 arc 22’ = 0.00640 rad

arc 380" = “— = 0.001843 rad
0

These marks are of great use when finding small angles or lengths of arc for
given radii:

b
« =-— X o when the angle is to be

r found.
X
b=%2"" when the length of arc is r
¢ required.

Examples:

.6 , ,
CZZ—EX(_) = 45.8 Fig. 38

b= X8 _ 50156

7

14

16. Trigonometrical solution of plane triangles

The advantage offered by the trigonometrical scales is not simply the availabi-
lity of function values. Of more impor-
tance, function values can be used in
calculation without their being read
from the scales.

The law of sines is a convincing exam-
ple of the efficiency of the slide rule in
solving proportions:

a b_c

sinae sinf siny
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When one of these ratios is set up by v p v
bringing the length on scale C opposite Q ::
the corresponding angle onscaleSor ! < tan
ST, all other parts of the triangle can | ::::
at once be read. s :. o ' < sin
In practice this law is most often p ! :,El;'—:;'
applied in the case of right triangles, c | M
in which we have y = 90°, siny =1, D G 5 3 x
angle o = (90° — i) and angle 8 = . -
(90° — «). The law of sines is then  Fis- 40
rearranged as 8
[
a b ¢ a b c
sine sinf siny cosfi cosna ¢
and further: tan o = 2 % 90°)
b LA b c
Fig. 41
Depending on the given elements, there follows one of two procedures:
1. Given any two paris (other than those offfase 2).
2. Given the two short sides a and b. y
Example of case 1: - - -
A _7 x?
Given: c=5,b =4. B 2,
an
Required a, o, T <% cot
5 4 3 sT <% arc
= = = 51.15%ea) (@53 15° < sin
1 = 5in 53.15°  cos 53.15° S < cos
-
B = 53.45° A o
o = 90° — 53.15° = 36.85° o Q‘ 3 Tj5 x

a=23 Fig. 42 Given the hypotenuse

Over short side 4 on scale D stands § = 53.15° on scale S (black figures). It is
immaterial whether we set next 90° — 53.15° = 36.85°, using black figures
(sin) or set 53.15° on the red figures (cos). On scale D we find the other short
side, 3.

If a short side and an angle are given, the calculation is begun by setting the
side value to its opposite angle. Subsequent working is analogous to fig. 42
and the hypotenuse is found under the slide index on scale D.

It is at times convenient to set the angle on scale DF instead of scale D, to avoid
slide re-setting. If this is done, all other sides are found at once on scale DF and
the method needs no modification.

Example of case 2:

T .

Given:a = 3, b = 4. 3 o

Required ¢, o, 8 T ‘1%"“"——-——2‘;0':

Angle « can be found from ST < are

3 s “&d-l&ﬂ sin

tanyg = — = — cos
b. 4 . 2 L~ e :l-‘

or better, in the proportional form: D ———:, 8‘ &5 x

4 3

—_—= . Fig. 43 Given the two sides

1 tan «
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After setting the slide index to 4 on scale D, the cursor is brought over 3 on D.
The angle 36.9° can then be read on scale T. In the second stage of the calcu-

1 3

lation, the si lei d: — = ————

ation, the sine rule is used: — PR

The cursor is already over 3 on scale D. The slide is moved to bring 36.9° on
scale S under the hairline, when ¢ = 5 can be read on D under the slide index.
For o > 45°, if a > b, the calculation proceeds just as easily. The work always
begins with the larger of the short sides, but the complementary angle (in red
figures) is read from scale T and correspondingly, the cosine must be set with
the red figures of scale S.

Calculation will be simplified if a diagram is drawn, and error avoided. By
cultivating this habit, one can deal only with angles < 45° or, if need be, with the
complementary angle.

These two cited procedures for the
solution of right triangles have special
significance in connection with coordi- v
nate and vector calculations and in
work with complex numbers. They
apply in problems of conversion from . by
rectangular coordinates to the polar
form and vice versa. . % 509
Ax
Fig. 44 A x, dy<+-»rr,[p

161 Complex numbers

Complex numbers in the coordinate
form Z = a + i b can easily be added
or subtracted. The vector form Y o
) xeiy
Z =r x e'? =r[p is better suited to
multiplication and division. For this N
reason the conversion of one form
into the other must often be performed.
300
Examples: £ X -

Z =45+ i13 = 4.68/16.1% Fig.45 Z=x+iy=rlp

Z = 6.7/49° = 4.39 + i 5.05
The process of solution is shown in fig. 45 and follows the explanation given
above.

17. The LoglLog Scales

The Loglog scales are divided as logarithms of logarithms and are referred
to the fundamental scales C and D. In the ARISTO HyperLog the range 10-3
to 10+5 is displayed in eight sections, four with negative exponents, e~*, identified
as LLoo, LLo1, LLo2, LL03 from 103 to 0.999 and four with positive exponents,
eX, marked LLo, LL1, LL2, LL3 for 1.001 to 105. In the ARISTO Hyperbolog the

scales LL00 and LLO are not included; the range 103 fo 105 is displayed in six
sections only, three with negative exponents and three with positive exponents.

Readings taken on the LogLog scales are unique values, that is to say, the value,
e. g., 1.35 denotes only 1.35 and cannot be read as 13.5 or 135, as on the funda-
mental scales.

The Loglog scales LL and LLO are reciprocal one of the other. They permit direct
readings of reciprocals of numbers less than 2.5 with greater precision than is
possible with scales Cl or CIF.

Example: = 0.98328

1
1.0170
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By means of the exponential scales problems of involution or evolution are solved
by addition or subtraction, respectively, of scale lengths. Thus, required powers,
roots, and logarithms within the scale range can be calculated.

174 Powers and roots with exponents 10 and 100

The relative position of the LogLog scales is such that, by passing from one scale
to that adjacent o it, the tenth power or the tenth root of a number set on one
scale can at once be read on the other, depending on the direction in which the
reading is made.

The relationships developed are shown by the examples of fig. 46, for cursor
settings to the value 1.015 on scale LL1.

Examples: Read on
Scale

10 -
1.01501 = V1.o15 = 1.00149 LLo

1.0157  =1.015 LL1 ]
1.01510 = 1.1605 LL2 ;“
X
1.015100 = 4,43 LL3 nx
1 iy
——— —1.015-100 — 0,2257 Lloz L Ig x
100
1.015 a 1
C x
—_— -10
101510 = 1.015 = 0.8617 LLo2 LDLs ;ﬁ_“ .
LL2 ; R TeT T AL
_— —_ —1 — b 11605
ot = 1.015 = 098522 LLot . ] 108 ueu
LLo - ST Y 1Y
LI = 0.99851 LLoo 9 gooia ¢

0. 10—
1.01501 l/1 .015 Fig. 46 LL scale assembly

Varied readings of the series shown in fig. 46:

10 ... ~ 10 e
1/4.43 = 1.1605 Vo.2257 = 0.98522 0.98522'0 = 0.8617 1.001491000 — 4 43

These examples, although seldom met in practice, will serve to convey a better
understanding of the construction of the Loglog scales.

17.2 Powersy = a*

Involution or the raising of a number to a given power is carried out with the
Loglog scales in association with the fundamental scale C in a manner analogous
to multiplication with the fundamental scales.

Procedure:

[TPRE]

a) Use the cursor to set the initial or terminal index of scale C to the base “a
on the appropriate LL scale. E. g., a = 3.2 in scale LL3.

b) Bring the cursor hairline over the value of the exponent x, read on scale C.

¢) Read the power y under the hairline on the appropriate LL scale, (check
the reading rules).

With the slide set to the value of the base ‘‘a’’, we obtain a complete table of

values of the function y = a*. Fig. 47 shows such a setting for the function

y = 3.2%, in which the cursor hairline is over the value of the exponent x = 2.5

and simultaneously its decimal variants.
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Examples: Read on >
scale e A D0.07086 . g ours
3.22:5 =18.3 LL3 LLlot O R
3.2025 = 1.338 LL2 LLez 007476 | o1x
320025 — 1.02956 LL1 LLe3 ST "
3.20.0025  — 1002912 LLo g; nx
3.2723 = 0.0546 LLo3  coF .
3.2°025 = 07476 Loz & Ig x
3.2-0025 — 097134 LLot 1
3.2-0.0025 — 0.997096 Lloo § ! X
LLs 22 -
Reading rules for y = a* L2 ot
a) When the exponent x is positive, Lt otor
set and read in the same scale LLo ! pOoH
group, LLO-LL3 or LL00-LL03, using -
figuring of like colour. Fig. 47 Powers
With negative values of x, it is - A d
necessary to switch from one scale  Ltowo Lty
group to the other and to set and s o-vot
read in unlike colours. Loz | J0.685 @038 .
b) In conformity with the indications  LLos o
given at the right hand end of each g; nx
scale, read on the adjoining scale o 1
with lower value, for each place : X
that the decimal point in the expo- t T‘
nent is moved to the left (see © X
example in fig. 47). s L L L I x
¢) When the base is set with the right 2 "
hand slide index, all readings must  LL2 I OFS
be taken on the adjoining ‘‘higher”  LL oo
value Loglog scale (fig. 49). LLo #0000

With bases 0 < a < 1, powers for

- P
positive exponents are read in scale Fig. 48 Left hand index of C over base

group LL00-LL03. If the exponent is v e J
negative, read the power on LLO-LL3. Ll - RN
LLoy P T
Examples: Loz ' 0885, . g-oma
0.6852.7 = 0.36 (Fig. 48) LLos OLED ot
0.685-2.7 < 2.78 g; nx
1.4627 =278 CIF i
146727 =0.36 L Ig x

Figure 49 shows the examples of fig. g'

1

x
48, but with initial setting using the p g“ L :

."l

right hand index of the slide. In this s 128
event, the result is not found on the |,
scale in which the base is set, but in
the adjacent scale, LL3 or LL03. When
the base, as in this example, lies near
the middle of the scale, it is often of
advantage to work with scale CF.
The complete scale range of CF is then available for the setting of the exponent
and slide re-setting, as in tabulation, is avoided.

LLy oMo1x

LLo P

- -
Fig. 49 Terminal index of C over base
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If one begins with an easily developed approximation, there is little uncertainty
about the magnitude of a power read from the Loglog scales, especially if the
several LL scales are recognised as sucessive segments of one continuous
exponential scale, interrupted at only one stage, between 0.999 and 1.001.
Values in this gap can be found by approximation, using a series, as explained
in sections 17.3.2. and 17.3.3.

17.3 Special cases of y = a*

The extent to which the exponent or the base may vary is limited in direct
application by the range of the LogLog scale.

1734 y> 10%andy < 10-5

If the power corresponding to a base with a large exponent is outside the range
of the Loglog scales, the procedure to be adopted is to express the exponent as
a sum and thus obtain the power in factor form.

Example:
34419 = 3.146+6+7 = (3.14%)2 x 3147 = 0.9552 x 108 x 3.02 x 103 = 2.76 x 107
Analogous procedure is, of course, appropridte for negative exponents.

ce

17.3.2 0.999 < y < 1.001
(ARISTO Hyperlog only)

When the exponent is so small that the number raised to a power is less than
1.001 but greater than 0.999, the result cannot be read on the Loglog scales.

The series expansion
2 3
+x __ X x_ 2 X 3
a —111—!lnc+-2!|n ctjln a+...
provides in such cases an approximate solution in the form:

a** =1+ xInafor|xInal <1

When index 1 of C is set fo the base a on the Loglog scale by means of the
cursor, the value of loge a is simultaneously set on the D scale (see section 18.4
and 18.6). Multiplication by x is achieved by moving the cursor along the C
scale and reading x loge a on D. This intermediate value, with 1 added or sub-
tracted, is the required power a* X The smaller the exponent, the closer the
approximation secured by this method.

The example of fig. 47 can by this means be carried further, thus:
3,20.00025  — 1 4 0.0002908 = 1.0002908
3,2-0.00025 — 4 _ 0.0002908 = 0.9997092

Should the exponent be still further reduced by change in the position of the
decimal point, the answer obtained by the method given above will be varied
only in respect of the number of zeros or nines immediately following the decimal
asoint. E. g., 3.20-000025 — 1,00002908.

17.3.3 0.999 < a < 1.001

(ARISTO HyperLog only)
When the power y = a* the base is greater than 0.999 but less than 1.001,
an approximation is again of service,
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From the series previously quoted, a®* =1 + x In a. As a approaches 1, we
can write a = 1 + n and hence:

aX=1£n*=14xIn{1+ n)
n2 nd
Now In (1 in)=i—n——2—iT—...:=in(for[n[<1)

(1Txn*=1+nxand(1 + n)X=1F nx(for|nx| 1)

If the range of the LogLog scales will not permit setting the base a, scale D can
be used as an exponential scale. In this event, note a difference in procedure.
In place of a = 1 + n, we must set the value n. When the initial index 1 of C is
brought over n on scale D, the setting is for all practical purposes identical
with the setting of 1 + n on an exponential scale which could be regarded as
an imaginary Loglog scale covering the range 1.001 to 1.01 or 0.990 to 0.999.
The smaller the value of n, the closer the approximation In (1 + n) = + n.

The value of the power is obtained, as usual, by a simple multiplication n X x.
To complete the result, the value found thus on D must be added to or subtracted
from 1, according to the sign of n. With larger exponents, the power will lie
within the range of the LogLog scales and the result can then be read directly
from them.

Examples:

1.00023%-7 = (1 4 0.00023)3.7 = 1.000851 Reading on scale D added to 1

1.00023%7 = 1.00854 Reading on scale LLO

0.999773-7 = (1 — 0.00023)37 = 0.999149  Reading on scale D subtracted
from 1

0.99977%7 = 0.99152 Reading on scale LLoO

17.3.4 099 < y < 1.01
(ARISTO Hyperbolog only)

When the exponent is so small that the number raised to a power is less than
1.01 but greater than 0.99, the result cannot be read on the Loglog scales.

The series expansion
£x =1 4 | X n2a + 2
ar=ltgyinatgrinfet gy

provides in such cases an approximate solution in the form:

a4+ ...

atX =1+ xina for|xInal-<€1
When index 1 of C is set to the base a on the LoglLog scale by means of the cursor,
the value of log, a is simultaneously set on the D scale (see section 17.4 and 17.6).
Multiplication by x is achieved by moving the cursor along the C scale and
reading x log, a on D. This intermediate value, with 1 added or subtracted,
is the required power a*X, The smaller the exponent, the closer the approxi-
mation secured by this method.

Example:
3,20.0025 . 1 4 0.0025 x In 3.2
= 1 + 0.002908 = 1.002908
3.2-0.0025 — 1 _ 0.002908 = 0.997092
Should the exponent be still further reduced by change in the position of the
decimal point, the answer obtained by the method given above will be varied

only in respect of the number of zeros or nines immediately following the

decimal point.
E. g. 3.20.00025 — 1,0002908
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17.35 099 < a < 1.04
(ARISTO Hyperbolog only)

When, in the power y = aX, the base exceeds 0.99 but is less than 1.01, the
solution is again obtained by approximation.

In accordance with the series expansion applied to the case reviewed in the
preceding paragraph: a** = 1 + x In a. Since a, in the present case, is near 1
we can write a = 1 + n, from which we can further derive:

aX=(1+n*=14+xIn(1+£n)

n?2 a3

In(1 + n) =in—?¢T——...
In(1+n) =4+n (for jn| << 1)
(1+£n* =1+nx (for [nx] < 1)
(1+n)>=1Fnx (for jnx |-+ 1)

If the range of the LL scales will not permit setting the base a, scale D can be
used as an exponential scale. In this event, note a difference in procedure. In
place of @ = 1 + n, we must set the value [n .

When the initial index 1 of scale C is brought over n on scale D, the setting is
for all practical purposes identical with the setting of 1 + n on an exponential
scale which could be looked upon as an imaginary Loglog scale covering the
range 1.001 to 1.01 or 0.99 to 0.999. The smaller the value of n, the closer the
approximation In (1 + n) = + n.

The value of the power is obtained, as usval, by a simple multiplication n x.
To complete the result, the value found on D must be added to 1 or subtracted
from 1, according to the sign of n. With large exponents, the power will lie
within the range of the LL scales and the result can then be read directly from
the Loglog scales.

Examples: Read on scale
1.0023%7 = (1 + 0.0023)37 = 1.00851 D and add 1
1.0023%7 = 1.0888 LL

0.997737 = (1 — 0.0023)37 = 0.99149 D and deduct from 1

0.997737 = 0.9184 LLo1

With the cursor hairline aligned over the left index of D, the amount of displace-
ment relative to the line for 1.01 on LL1 provides a good check on the amount of
error in the approximative computation. The maximum degree of error will
be introduced into the approximation when both setting and reading take place
on scale D in substitution for the LoglLog scales.

17.3.6 Improving the accuracy
(ARISTO Hyperbolog only)

The precision can be improved when the disparity between reading on the
D scale and the actual Loglog scale within the range 1.001 to 1.01 is corrected
by also applying both the linear and the quadrature term in the series expansion
to the previously discussed procedure.

for settings of the base on D
for readings taken from D

A) In(1+tn)==+n(17Fn/2
B) exX 1+ x(1 £ x/2)
When the result is obtained from a Loglog scale, only formula A need be applied
before making the setting on scale D. If, however, scale D is used exclusively
in a computation, corrections have fo be applied to the setting as well as to the
answer (formula B).

i
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Example:
1.002337 = 1.00854

For n = 0.0023 substitute the setting
0.0023 (1 — 1/2 x 0.0023) = 0.0023 x 0.99885 = 0.002297 by slide index on
scale D.

The operation required to determine the 3.7th power, viz. 1 4 0.002297 x 3.7,
gives 1.00850. This reading, because of its taking place on scale D, requires
correction by formula B, as follows:

0.00850 (1 + 1/2 x 0.00850) = 0.00850 x 1.00425 = 0.00854

After adding the *“1”, the final answer then is 1.00854 (exactly: 1.0085362). The
foregoing computation may at first sight appear rather involved and awkward
but will actually be found quite simple after some little practice, so that in time
the computer will be able to make the corrections by visual estimate.

Corrections of the kind above reviewed are no longer necessary when the
base drops below 1.001, because slide rule accuracy will then be equivalent to
that obtainable by approximation.

174 Powersy = e*

The expression y = e* provides a special case for “neutral’ positioning of the
slide, which then establishes the value e = 2.718 as base. Because with this
setting, scale D is in a constant relationship with the LogLog scales, it is sufficient
to set the cursor to the exponent on scale D in order to read the power on the
LL scale. if the cursor is set to 1.489 on scale D, the following powers can at
once be read:

el-48% = 443 e 1489 — 0.2260

01489 — 1.1605 e=0.1487  — 0.8618

0.01482 _— 1. 015 e—0.01489 _ 098523

0.001489 — 1.001489 e—0.001489 — 0,998513

Further variations can be determined by using the approximation e+* = 1
£0.0001489 — 1.0001489

I+
x

x
175 Rootsa = Vy

Evolution, with given radicands, can be carried through directly with the
exponential scales. The extraction of roofs, the converse of raising fo a power,
follows from division using the Loglog scales and fundamental scale C. If the

example of a power, 3.22-5 = 18.3, given in chapter 17.2, is reversed, it will be
2.5

seen that by working in the contrary sequence we can read V18.3 = 3.2.

Procedure:

a) Setthe radicand y on the appropriate LL scale over the radix x on the scale C.

b) Read the value of the root under the initial or final index of the scale C on
the appropriate LL scale.

The rules for reading the result, given in chapter 17.2, are here applicable.
It is to be noted that when a reading is to be taken under the right hand index,
reference must be made to the next lower LL scale.
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Examples:

> s
0.77 1 Lies 0.99605 @-0901e
V21 = 52.1 e = 0.0192 U yoseET e
0']//7 LLea ®) 0.672¢ oot
2
LLoy OIIT TR
b )
7'1521 = 1.485 1 o673 & f =
= 1. 77 = U CIF x
V21 L 19 x
cl 1
77 1 (o] 277 10 :
D
V21 = 1.0403 77— = 096122 D N G-
Va1 L2 iz
®)1.0403 0.81a
770 1 (48] o
V21 = 1.00396 sg— = 0.99605 Lo oI T
- PS
Va1 Fig. 50 Rools

The extraction of roots is more easily understood if the radix is expressed as
an exponent. The exponent can then be set on scale Cl or, if the base is e, on
scale Dl

In the following example the cursor is set to 3.5 on DI and the root read on
LL2 and LLo2.

|-

35 b
Ve=¢e 33 =1.3307in LL2

-

5
‘e =e 35 =0.7514 in LLo2

-

17.6 Logarithms

17.6.1 Logarithms to any base

Required logarithms to any base can be found with the Loglog scales. By
reversing the process of raising a number to a power, we obtain its logarithm
as is seen immediately if we write:

y = a*, x = log, y (read: logarithm of y to base a).

The finding of a logarithm is thus identical with the problem of a power for
which the exponent is required.

Procedure:
a) Set cursor to base a on the appro- 5
priate LL scale. § L Ok x
b) Bring the initial or final index of LLa 2 P -
the slide to the cursor hairline. L2 prys
c) Set the value of y, with the cursor, 4y, e
on the LL scale. Lo Y
d) Read the logarithm on scale C - -
under the hairline. Fig. 51 logs 125 = 3.0

The position of the decimal point can be determined from the relationship:
log, a =1,

With the left hand index of the slide over the base a, all values to the right of the
value a on scale C are greater than 1 and all values to the left of a on scale C
are less than 1.
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Reading rules:

a) Passing from one Loglog scale to the adjacent scale, in sequence LL3, LL2,
LL1, or LL03, LL02, LLO1 results in a shift of the decimal point in the logarithm
by one place to the left. A change of scale in the opposite direction calls for a
shift of the decimal point to the right.

b) The logarithms will be positive (negative) when their antilogs and bases are
set on like (unlike) coloured Loglog scales.

Examples for practice: logy,16 = 4.0
log, 1.02 = 0.02857
log, 0.25 = -2

17.6.2 Decadal logarithms

If the index 1 of scale C is set to base 10
i 202033 :

on LL3, then for any number set on g

an LL scale, the decadal logarithm can s 10 o
be read on scale C (fig. 52). Liz o ot
The frequently required decadal loga- 1Ly 0001
rithms can also be found fromthe usual ;4 0001
mantissa scale L on the slide, if the ‘

- -
antilog is set on scale C. Scale L gives Fig. 52 Ig 1.92 = 0.2833
only the mantissa and the characte-
ristic must be added in accordance

w
with the rule “‘number of places minus g; nx
1", as when a table of logarithms is CF - 1
used. For every plain number (anti- Do X
log) on scale C, the logarithm is L % o x
directly available on scale L and con- o é x
versely, given the logarithm, the anti- S 12 x
log can be read directly from scale C ' i
(fig. 53). Fig. 53 g 1.92 = 0.283 with L/C

If scale L is used, it is only necessary to move the cursor and thus the finding
of a decadal logarithm is more simple than when the Loglog scales are used.
However, within the range of scale LL1, the LogLog scale gives greater precision
in reading:

Examples: Ig 1.03 = 0.01283 using scale LL1

Ig 1.03 = 0.013  using scale L
Examples for practice: logy, 50 = 1.699

logy, 2 = 0.3010

logy 1.03 = 0.01283

logyq 0.015 = —1.824

logyy 0.5 = —0.3010

logyg 0.1 = —1

logqy 6 = 0778

logyg 1.14 = 0.0569

logy, 1.015 = 0.00647

When setting with the right hand index of scale C, all results lie on the left of
the base and are therefore < 1, e. g. log,q 9 = 0.954. Logarithms of numbers
< 1 are negative.
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17.6.3 Natural logarithms T .
8 1 1504 (0235 (£)0058 x

Logarithms to base ‘‘e” are simply L3 < = o

found by transfer from the fundamen- |, s

tal scale D to the Loglog scale (fig. 54). w "m ?log o0t

Examples for practice: LLo l o
In 4.357 = 1.475 i S:Lr “; 1";01.
1g. n &, - Y.
In 0.622 = —0.475 9 in 1.27 = 0.239
In 0.05 = —2.994 In 1.06 = 0.0583

18. Further applications of the Loglog scales

Up to this point, we have used only the slide scale C in conjunction with the
LogLog scales, in order to demonstrate the essential relationships. Other slide
scales can, of course, be used. Their functions, in association with scale C, have

already been explained in earlier sections e. g., with scale B, a power a Vx can
be set. Also, the slide scale of sines, S, is of immediate practical value in calcu-
lating e¥'"*. Reciprocals, too, offer further possibilities in logarithmic computation.
Scale CF can be used in place of scale C, in conjunction with the LL scales,
to reduce slide re-setting when tabulating, should the base lie near the middle
of the scale. h

18.1 Solving proportions with the Logl.og scales

If the index 1 of scale C is set to a base “a’’ on a Loglog scale, the powers to any
exponent and also the logarithms of any number to this base can be read.
A base a set on a Loglog scale can thus be regarded as a term in a proportion.

1811 y; =a" y, =a™m
fogy; =n x loga
logy, =m X loga 8 g g" i'“ X
loga _logy; logy, L3 : AL AEON L L
= = Tm R
In a In y, Iny, Fig. 55
1T " T m

If three terms of a proportion are known, the fourth proportional can be calcu-
lated and with the initial setting, a number of terms in the same ratio can be
found. Here again is seen the advantage of the principle of proportionality,
a method of calculation for which the slide rule is particularly svitable, as
examples will show.

18.1.2
8 7 68 :
— a—?\l__) lo . E log a LLs L3 394 P
Yy = gy = '°9 L2 o
logy loga w 2091
m - n LLo @%00ta
:._t; logy log4.3 - -
=43 - =~ = . " log 4.3  log 39.4
Y 6.8 2.7 Fig. 56 % Il v
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After setting 4.3 on LL3 opposite 2.7 on scale C, the result 39.4 will be found on
scale LL3 under 6.8 of C. Modifications of this problem are, of course, solved
analogously:

2.7

y = V4368 or 27 — 4368
18.1.3

Mqr.1y nut_urul laws can be expressed in proportional form, if the change in one
variable is proportional to the difference in the logarithm of the other variable,
i. e., if we can write:

log y; — log y, = const (x, — xq)

Because loga — log b = log %

. Y2
we may write: log — = const. (x, — x,).

1
A change from x; to x,, by an amount i, results in a change of Yq 1o yo. If we

Y2
denote the ratio — by r, representing the residue of the initial quantity, the

above equation can be written:

|
o? r_ const. — log ry _ log ry _
" f2
lr ‘—!r
Example: Radioactive decay LLoo PPN
The decomposition rate of a substance ™ o
is known to be 409, in 30 days, i. e., Ll 2e oo
the residue is then 609,. After how Liwm ¥ o
many days will the residue be 20%? g: Rx
Here iy = 30, r, = 0.6, r, = 0.2 crF i
L Ig x
log 0.6 _ log 0.2 al R |
30 x c o 10 :
D x
whence  x = 94.5 days. Fig. 57
18.1.4

If a logarithm is to be multiplied by a constant factor, the constant is set on C,
over the base of the logarithm on the Loglog scale. A tabulating position for
the multiplication is at once set up.

_ _— " -
r:rr;. clog, y. write in proportional g ) Y - :
LLa 0 ! o
x _e_ < W o
log, vy 1 log, a L Qoo
2 X logyy 100 = 4 LLo atoons

- -
2 X logy 1.8 = 0.511 Fig.58 xm2xlgy

As shown in fig. 58, all logarithms to base 10 can be multiplied by the constant 2.
The process applies also to the LLO scale group, with logarithms of numbers < 1.
In physics and communication technology it is often necessary to express a
given amplitude ratio in decibel (dB) notation.

A
dB 2 201g -
2
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Examples: 20 dB=20Ig 10
40 dB = 20ig 100
511dB =201g 1.8

19. The hyperbolic functions

The scales Sh1, Sh2, Ch and Th, like trigonometrical scales, link angles to function
values read on scale D. For any argument set on Sh, Ch or Th, the corresponding
function value is at once readable on scale D.

For the hyperbolic functions the respective arguments are given in radians and
not in degrees. Conversion of degrees to radians and vice-versa can be perform-
ed by the method given in chap. 15.2, the respective values appear directly un-
der the cursor hairline on scales C and ST.

Multiplication and division with scales Sh1, Sh2, Ch and Th is analogous in
procedure to that employed when the trigonometric scales are involved so that
expressions of the form cos y X sinh x etc. can be worked out.

191  Scales Shi, Sh2

For any argument x, between 0.1 and 0.881\, set on scale Sht, function values of
sinh x between 0.1 and 1.0 are available on D. The additional scale Sh2 extends

this facility for arguments x between 3 1 2

0.85 and 3, with the corresponding - A d

values of sinh x between 1 and 10. Sh2 7 —— < sinh

) eX Th <X tanh

Note: For x > 3, sinh x = 5 « o

and x < 0.1, sinh x = x 2 <

Examples: T :tt:::::

1. sinh 0.349 = 0.356 st <t are

2. sinh 0.885 = 1.005 s ‘ oo

3. sinh1.742 = 2.77 ; Vi

Naturally, the converse applies — for gl @7 OLE RO i

a given function value the argument, x

in radian measure, can be read. ch <t cosh
) shi Qs Q08 gioh

For sinh x = 2.77, the converse is Hy 4

x = arcsinh 2.77 = 1.742.

19.1.1 Cosh x

(ARISTO Hyperbolog only)
The computation of the hyperbolic cosine is somewhat more complicated. Two
methods of solution may be used, viz.:

Fig. 59 Hypaerbolic sine

sinh x 2 .
cosh x = anh x or cosh x = ]/slnh x + 1
- w
Th 0637 s tanh
Fig. 60 illustrates the solution of cosh a
0.437 by performing the division i
sinh x = tanh x. The computation 8 x?
begins with setting the index of the T -t
slide to the argument on scale Th sr are
with the aid of the cursor. The value . g —xsin
of cosh x is then read on scale C ¢ X 1 ®1.097 x
directly over the same argument on P® x
the Sh scale. The value so obtained N *
represents the difference between the  Sh2 < - sinh
two scale values pertaining to 0.437  sm ~ ~xsinh
as measured along scale C. - !

Fig. 60 cosh 0.437 = 1.097
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o 4.5341
cosh 0.437 = SN 04874 o0y H Jeo *‘5'5’ b
tanh 0.437 T ~tan
. . ST ~tarc
or, better, in the proportion form: s —<sin
tanh 0.437 _ sinh 0.437 > @ i
1 " cosh 0.437 -
Sh2 5 ~tsinh
N — Shi «zsinh
cosh 1.5 = V/sinh2 1.5 + 1 = 2.352 | i
Fig. 61 cosh 1.5 = 2,35

The solution shown in fig. 61 takes the following course: Set the cursor to the

argument x on scale Sh2 and read the value of sinh? x opposite this setting
on scale A. After adding *“1” to the value so obtained, shift the cursor to this new

value sinh? x + 1 on scale A. Scale D then supplies the answer under the cursor
hairline. This form of solution is quite simple but requires the computer’s strict
aftention to the correct placing of the decimal point in the square, so as to make
sure that the cursor line is set fo the correct sum and within the appropriate
section of scale A, The advantage of this method lies in the fact that the course of
the computation may be reversed when the argument has to be determined from
the function.

Examples:

cosh 0.2 = 1.02 cosh 1.0 = 1.543 arc cosh 2.5 = arc sinh ]/2.52 — 1 =1.567

X
When x < 0.1 write cosh x = 1. For x > 3 apply cosh x = eT

19.2 Scale Ch
(ARISTO Hyperlog only)

For any argument 0 < x < 3 set on Ch we have at once the function value
cosh x, between 1 and 10, on scale D.

Note: Forx < 0.1, cosh x = 1
eX
x >3, coshx == — ) 2
2 C
X
o D (#)1013 1097 0)2352 x
== sinh x o 4 %
Examples: Ch <

)0163 (0.437
1. cosh 0.437 = 1.097 2 -
2. cosh 0.163 = 1.013
3. cosh1.5 = 2,352

Fig. 62 Hyperbolic cosine

Scales H1 and H2, in conjunction with scales Sh1 and Sh2, provide further
possibilities for the determination of hyperbolic cosines, by use of the identity

cosh x = 1/1 + sinh2x
For any argument set on scale Sh we have the function value on D and for any

value x on D, the value ]/1 + x2 can be read on H. Thus, setting any argument
x on scale Sh has, opposite to it on scale H, cosh x.
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Opposite the range 0.1 < x < 1.0 on

D we have 1.005 < J/1 4+ x2 < 1.41

on Ht and against 1.0 < x < 100on D,

1.41 < V1 4+ x2 < 10.06 on H2.

Reference to section 19.1 shows that,
for hyperbolic cosines, scales Sht, H1
and Sh2, H2 work in pairs.

If settings on the left hand portion of
scale Ch are uncertain, scales Sh1, H1
provide greater accuracy. In practice,
we have a correspondence resembling
that between scales S and P.

Fig. 63 shows examples for comparison
with those of fig. 62.

cosh 0.437 = 1.0971

cosh 1.5 = 2.352

cosh 0.163 = 1.0133

19.3 Scale Th

This scale provides for arguments x,
from 0.1 to 3, in association with scale
D, corresponding function values of
tanh x, 0.1 to 0.995.

Forx > 3,tanh x =1 — 2e2% = 1
for x < 0.1, tanh x = x

Examples:

tanh 0.257 = 0.251
tanh 1.614 = 0.924

The function values of coth x can be found from coth x =

is set on scale Th.

Example:

tanh 0.549 = 0.500
coth 0.549 = 2.000

19.4

1
1’7 L 4 v
H2 [e) 2 352 m
Shz TE <I vinh
Th <¢ tanh
K x
A ‘:
2 S tan
T < cot
ST < arc
~<X sin
s <) cos
P Viced
c x
: i
o]} X
Ch <X cosh
Shi {y0163 2087 ginh
A R
H 16137 gy V1eR
P - P
Fig. 63 Hyperbolic cosine
by
Th 0.257 1614 - <*tanh
K x
A x?
B 2
- % ton
<% cot
ST < arc
<X sin
s 7. cos
P WiTe
[ x
D #0251 Qusn x

Fig. 64 Hyperbolic tangent

For x < 0.1, coth x =

For x > 3,

Fundamental hyperbolic formulae

1
tanh x

coth x =

on scale D, if x

—axl_‘

It is often convenient to have ready to hand a list of the fundamental hyperbolic

formulae:
sinh x =1/, (e!* — e™X)
cosh x = 1/2 (et* + e7X)

sinh x
tanh x =

cosh x

tanh x x cothx =1

sinh x + cosh x = e*

—sinh x + cosh x = e™X%

tanh x =

1 —e2x  e2x_4

cosh? x — sinh? x = 1

1 4 e—2x B

e2x 41
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20. Hyperbolic functions with a complex argument

In the literature of mathematics it is shown how the following formulaeforcircular
trigonometric and hyperbolic functions, with complex arguments, are derived.
(@) sinh (x + jy) =sinh x X cosy + jcoshx X siny
(b) cosh(x + jy) =coshx X cosy =+ jsinhx X siny
(¢ sin (x+jy)=sinx xcoshy + jcosx X sinhy
(d) cos (x+jy)=cosx X coshy + jsinx X sinhy

tanh x + jtany
1+ jtanhx X tany
tan x + jtanhy

1 F jtanx X tanhy

() tanh(x + jy) =

) tan (xxjy) =

Observe that in these formulas the arguments of the functions concerned may be
either radians or degrees.

By use of formulas (a) to (d) the answers are at first obtained in the complex
notation form a + j b, from which the vector equivalent r/p can be computed

in the customary manner as shown in the examples given in chap. 16.1.

Examples: sinh (0.25 4 j12.7°) = sinh 0.25 X cos 12.7° 4 j cosh 0.25 x sin 12.7°
= 0.2526 x 0.976 + j1.031 x 0.2198
= 0.2464 + j 0.2267
= 0.335/42.6°
sin (1.05+4j0.61) = sin 60.2° x cosh 0.61 + j cos 60.2° x sinh 0.61
= 1.035 4+ | 0.322 = 1.083/17.3°
Intermediate conversion: 1.05 radians = 60.2°

Although the indicated multiplications are performed without stopping to read
the several values of the functions themselves, the computation is rather tedious,
especially in view of the inconvenience in computing the cosh. Therefore the
following method is presented to show a short cut to the solution of these prob-
lems.

201 Sinh(x+jy)

The identity sinh (x + jy) = sinh x X cosy 4+ jcosh x X siny can be written
in the familiar vector form as a =sinhx X cosy and b = cosh x X siny.
See fig. 65.

From figure 65, compute ¢ from:

cosh x X siny r
sinh x X cosy

coshx  siny e
= sinh x x C—C)?; coshx - siny
_ tany Fig. 65

" tanh x

tan g = j sinhx-cosy

This new formula makes possible a
speedier calculation for ¢ and r, since g tany
if @ is known from tan ¢,

?

i
sinh x X cosy o

cos @ Fig. 66

This latter equation can be seen from fig. 66. Squaring the values of the sides
provides a check on the work, since r2 = sinh2 x + sin? y. Whilst the division

tany
tan g = tanh x

is a fairly simple problem, the shortest method may not be
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immediately apparent, since, according to the magnitude of the arguments ¢
and y, several setting methods may be used. The best recourse, to avoid reading
errors, is to make an approximation, using rounded-off values.

Example: sinh (0.25 + j 12.7°)

It can be seen at a glance that tan 12.7° on T is located to the left of tanh 0.25 on
scale Th and is therefore the smaller one of the two values. Hence, too, tan ¢ < 1
and ¢ < 45°,

tan 12.7° tanh 0.25 1

tangp = or, written in proportion form

tanh 0.25 tan 12.7°  tang
The latter form is the best suited for 5 " hd
slide rule work. We only have to bring  Th . <X tanh
0.25 on Th into coincidence with 12.7° K x
on scale T in order to read ¢ over the A x
right index of the D scale on T. ? @ure a6 tan
< cot
_ tan 12.7° '__ o ST < are
fany = o254 s\ < s
<¥ cos
Approximation: 2 i !“""
D 1 x
tan ¢ = 92 = 0.8, ¢ = 40° e
0.25 Fig. 67 o = 42.6°
sinh 0.25 o T
r= IS X cos 127° = 0.335 s S @ 4
P 1-x?
r = /sinh2 0.25 + sin2 12.7° c o
—_——— DI H
pa— —_— x
r= ]/0.0484 + 0.0639 = 0.335 ch % cosh
Check: S Quss < sinh
-~

Sinh (0.25 + | 12.7°) = 0.335/42.6° Fig. 68 r = 0.335
To enable this short-cut method to be used for all combinations of angles,
setting and reading sequences are gathered together in the following table.
Whoever meets such problems regularly will quickly master the method and
save much time. For those who rarely meet such problems or do not have the
table at hand, it is probably best and safer to determine the values of the functions
tanh x and tan y as a first step, before attempting the division.

Table: calculation of fan y
tanh x
Read-
y X First setting Cursor setting |ing for| ¢
y on over @ on
5.5°—45° |tanh x > tany [T under x on Th |rightindex of D| T < 45°
5.5°—45° [tanh x < tany [T under x on Th [rightindexof C,] T > 45°
then slide closed| (red)
< 5.5° [tanhx < 10tany|ST under x on Thleft index of D T > 5.5°
< 5.5° [tanhx > 10tany|ST under x on Thiright index of D| ST [ < 5.5°
> 45° |10tanhx > tany|T (red over) x on Th T > 45°
right index of D (red)
> 45° [10tanhx < tany|T (red) over x on Th ST | > 45°
left index of D
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Evaluation of the hypotenuse b d

e sinh x Th p361 < tanh
- cos @ X cosy K x?

is simple if it is remembered that all 3 ::

cosines must be set on scale S, using T L T Lz e

the red figures. ST <% are

s ::T. sin

cos
Examples, using the table: P Vi-e

c

1 o} 1 :

. -,
sinh (0.361 +  11.8°) = 0.422/31.120  Fig- 69 p=3142°
tanh 0.361 > tan 11.8° s 32%wd) nee g sin
@ = 31.12° p s
r_sinh0.361xc 11.8° ¢ x )

= cos 31420 © T DI posr %

x

r = 0.422 Ch <k cosh

Sht 036 < sinh

2. Fig. 70 r == 0.422
-w
sinh (0.38 4 j 32°) = 0.657/59.87° ™ 938 < tanh
tanh 0.38 > tan 32° K x
@ = 59.87° [ 5
Set tanh 0.38 and tan 32° opposite each T ___‘_J.Z'__@.M_____j -
other (fig. 71) and move cursor to the st < arc
slide index to read on scale DI the g < sin
value tan ¢ = 1.725. Without moving P 7‘°—°,'
the cursor, bring next the slide to the & — e .
“neutral” position, when ¢ = 59.87° » 1 %
can be read on scale T. oI 7] ] x
- ?
Fig. 71 ¢ = 59.87°
w

Th 0262 o tanh
3. K x?

A Xt
sinh (0.262 4 j 4.52°) = 0.2764/17.13° g ~@?.-,,.,- S an
tanh 0.262 < 10 x tan 4.52° st P s
= 17.13° s sin

cos

P o

[ x

D

4 [

Fig. 72 ¢ = 17.13°

w
™ L o < tanh
4. K ©
. . 8 5
sinh (1.13 + j 3.8°) = 1.388/4.68° T :q:t..,:
tanh 1.13 > 10 tan 3.8° <o
sT _*_f
¢ = 4.68° s * peese :::lr:
<% cos

P Vi-x?

[

© L S
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Fig. 73 o = 4.68°

5.

sinh (0.195 4 j 51.1°) = 0.8025/81.17°
10 X tanh 0.195 > tan 51.1°
@ = 81.47°

6.
sinh (0.274 4 j 73.5°) = 0.997/85.47°
10 x tanh 0.274 < tan 73.5°

@ = 85.47°
sinh 0.274 o

r= C_OSW’ X cos 73.5

r = 0.997

202 cosh(x+jy)

X tanh
X e
A x?
B x?
@)8117%ed) S1%tedt  <f tan
T T * < cot
ST I <. arc
s L
<I cos
P Vi-x?
o x
D [SL x
- -
Fig. 74 ¢ = 81.17°
w -
| { — _.;0 . - <% tanh
K x
A x?
8 x?
T A ?n S°{red) < tan
= < cot
ST Wé -3 arc
6§ - el W i — L
complementary numbers) <X cos
P View
C x
D [ x
PS -
Fig. 75 ¢ == 85.47° ‘e
ST T ~J arc
s 23.5%(red) <} sin
<§ cos
P Vicw
o] x
D )0 847 x
DI {read with L]
complementary numbers) X
Ch | < cosh
Shi - sinh

Fig. 76 r = 0.997

Qo
4

In a manner analogous to the previous description the hyperbolic cosine of a
complex argument can also be computed.

cosh (x + jy) = (cosh x X cosy) + j(sinhx x siny)

(@) tang = tany X tanh x

sinh x X siny
sin ¢

(b) r =

sinh? x 4 cos?y

() 2

?

ctoshx - cosy

Fig. 77

jsinhx - siny

Equation (c) again gives a means for finding r without knowing the angle ¢ by
visualizing a rightangled triangle with the sides sinh x and cos y as well as the
hypotenuse r. However, more frequently r and ¢ are unknown. The angle ¢ is
then computed from Eq. (a) and the hypotenuse r from Eq. (b). While it is quite
easy to solve for r, the double use of the tan function in Eq. (a) needs some

rational thinking, particularly when angles > 45° are concerned.

In problems of this kind, also, it is preferable to solve occasional problems by
following the elementary but safer course. Those users who have to make these
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computations as a matter of routine, may refer to the summary printed below,
which indicates the sequence of settings to be used for the fastest and most
accurate solutions of problems involving the expression cosh (x + j y).
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fig. 80 ¢ = 5.32°

y X First Setting Second Setting | Read ¢ on @
< 45°)0.1 < x < 3.0y on T over index| Cursor to x on TorST < 45°
of D Th resp. (black)
A rough approximation will} a) 0.1 < tanhx X tany <1 on T|<45°
settle whether the angle must ; b) 0.01 < tanh x x tany < 0.1 on ST|<5.7°
be read on T or ST: <) tanh x X tan y < 0.01 on ST |<0.57°
> 45%|coty > tanh x|  Rule closed, Right slide Cursor to x | < 45°
cursor overyin | index under | on Th. Ans-
T (red) cursor line wer below
on T (black)
Setting the cursor to y on T gives coty on C
> 45°|coty < tanh x| yonT (red) Cursor over T (red) > 45°
under x on Th index of D
Examples, using the table: v
Th .82 <§ tanh
1a. K ®
A xt.
cosh (0.523 + j 38.6°) = 0.954/2097° B S [ e % an
tanh 0.523 x tan 38.6° = 0.4, o1 pges
¢ = 20.97° s \ :t‘::'-
P Viced
: ;'
- a
Fig. 78 ¢ = 20.97°
s ; 097 i“ & ain
’ cos
__sinh 0.523 . o P V-t
r= sin 20970 X i 38.6 g .
8)0.95¢ 1
r=0.954 of x
Ch <X cosh
Shy 0823 < sinh
-
Fig. 79 r = 0.954
-
Th [——.———%q'mm
1b. K x*

) A °
cosh (0.261 + j 20.06°) = 0.976/5.32° : 0080 -
tanh 0.261 x tan 20.06° = 0.09 o

st s ke
¢ = 5.32° s sin
cos
P iead
c x
D 7 x
n

__sinh 0.261
~ sin 5.32°

r = 0.976

X sin 20.06°

1c.

cosh (0.183 4 j 2.31°) = 1.020/0.417°
tanh 0.183 x tan 2.31° = 0.008

@ = 0.417°

2.

cosh (0.525 + j 52.4°) = 0.821/32°

cot 52.4° > tanh 0.525,

@ = 32°

Referring to fig. 83, with the slide in the
“neutral’” position, tan 52.4° is set on
scale T with the cursor. The slide index

is then brought under the cursor hair
line.

cosh (0.318 + j 79.5°) = 0.371/58.92°
cot79.5° < tanh 0.318

@ = 58.92°

sinh 0.318 . o
r= m X sin 79.5
r=0.371

i

Fig. 84 ¢ = 58.92°

$ s

8T T <X arc
s ?zoos- o oin
< cos
P 1-x
[ x
D (ogo 976 H
DI %
Ch <x cosh
Shy (061 < sinh
“~
Fig. 81 r = 0.976
\ el
Th ; 0183 < tanh
K x?
A x:
? '<k tan
. <J. cot
tst [ 5N Ok < :l"
n
s cos
P Yi-xd
c
D gl :
-
Fig. 82 ¢ = 0.417°
-
Th ,,-._; 0.525 <% tanh
K x?
8 .
T @320 52.4%¢ed) !4 tan
<X ¢cot
ST <¥ arc
s 3
P VY- xt
c I o) x
D 077 9‘ x
-
Fig. 83 ¢ = 32°
L 4
Th one < tanh
3 @
: :
T 795%red) ®)se.82° ‘4 tan
<I eot
ST < arc
< oin
s < cos
P ¥
c
D 1! x
-

@.

i

s 3
P e
c
D ®0.37 :
o %
Ch ¥ cosh
8ht (o < sinh

h

Fig. 85 r = 0.371
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203 tanh (x +jy)
This expression can be calculated in two ways:
sinh (x + jy)
cosh (x £ jy)

tanh x + jtany
1 + jtanhx X tany

(@) tanh (x + jy) = (b) tanh (x + jy) =

Which of the two solutions offers the greater convenience is a matter of individual
preference. Users with sound practice in the computation of sinh (x + j y) and
cosh (x + jy) will probably adopt formula (a) as the speedier method.

Example: tanh (0.25 + j 12.7°)
0.335/42.62°
1.008/3.16°

. tanh 0.25 + jtan 12.7° 0.245 + j0.225
Formula (b) gives: =

"1 + jtanh 0.25 x tan 12.7° ~ 1 4+ j0.245 x 0.225

_ 0.245 + jo.225  0.333/42.62° 0.333/39.46°
T 1400552 T 1003165 U

Formula (a) gives: = 0.333/39.46°

21. Trigonometrical functions with complex argument

1. For the calculation of sin (x + jy), the undermentioned formulae are appli-
cable:

tan @ = tanh y re sinh Y. X cos x
tan x sing
Example: sin (0.52 4 j 0.24)
tanh 0.24
tangp = Tan 2985 = 0.411
__sinh 0.24 x cos 29.8°
r= sin 22.4°
@ = 0.552

2, Corresponding formulae for cos (x + | y) are:

sinh y X sinx

tan @ = tanh y X tan x r=————W—
Example: cos (0.52 4 j 0.24)

tan ¢ = tanh 0.24 X tan 29.8° = 0.135

=177
sinh 0.24 x sin 29.8°
r= sin 7.7°
= 0.899

3. When calculating tan (x + j y), the formula (f) of section 20 will apply, but

solution by the division
X sin (x +jy)
tan (x +jy) =——_cos(x+;z)
will be speedier.

22. Conversion of examples of sections 20 and 21

When a problem is expressed in the reverse order and consists of computing the
complex argument x + j y when its hyperbolic function is given, the procedure
is inevitably somewhat more intricate. The required operations will be explained
step-by-step for the hyperbolic sine functions.
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221  arsinhripg=x+jy

To compute the vectorial expression r/gp for sinh (x 4 jy), the components a

and b must be found. This presents little difficulty — see sections 16 and 16.1.
sinh(x+jy)=rip=rcosp+jrsinp=a+|b

In this, x and y are functions of a and b.

From the equation sinh (x + jy) =sinx X cosy + jcoshx X siny =a + jb
two further equations, with two unknowns, can be derived and solved for xand y :
aZ + (1 + b)2 = M2 = (cosh x + sin y)2
a? + (1 — b)2 = N2 = (cosh x — sin y)?2
whence 2coshx =M + N

2siny =M—-N

y is then found from siny = ; and x from the equation sinh x = %
N
or, alternatively, the relationship cosh x = (M—-*Z-—)

The foregoing equations show that M and N can be regarded as the hypotenuse
of two right triangles of which the sides are, respectively, a and (1 + b) and
a and (1 — b). These triangles can then be solved by the method of sections 13
and 16, the angles having, in this case, no significance. o

Example:
sinh (x + jy) = 0.422/31.12° (cf. example 1 of page 41).
Required: x and y
0.422/3112° = a + jb = 0.361 + j 0.218
The right triangle with a = 0.361 and (1 4+ b) = 1.218 gives M = 1.270
The right triangle with a = 0.361 and (1 — b) = 0.782 gives N = 0.861
M — N =0.409 M+ N =2131 = 2 cosh x

1/2 (M — N) = 0.2045 = siny cosh x = 1.0655

y = 11.8° x = 0.360
Under 1.0655 on scale D is x = 0.360 on scale Ch
Over 1.0655 on scale H1 is x = 0.360 on Sh1

222 arcoshrip=x+jy

The solution takes the same course as in the preceding problem except that the
formulas are adapted to the hyperbolic cosine.

M2 =(1 4 a)2 4+ b2 cos y =1/2(M—N)

NZ = (1 —a)2 4 b2 sinh x = —2_

siny

Example: cosh (x + jy) = 0.954/20.97° (Compare example 1 a. on page 44)

a+4jb=0.892 +j0.3413

triangle with 1 + a = 1.892 and b = 0.3413 gives M = 1.922
triangle with 1 — a = 0.108 and b = 0.3413 gives N = 38.6°
M—N=1564 1/, (M —N)=0782 = cos y y = 0.358
0.3413

sin 38.6°

0.954/20.97° = cosh (0.523 + j 38.6°)

sinh x = x = 0.523
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223 artanhrjp=x+jy
Here again two equations provide solutions for x and y

Ianh2x=2—rfgi(£=m
14 r2 1r+r
2rsingp _2sing
ﬁ—ﬂr—-r
Example: 0.333/39.46° = tanh (x + | y)

tan 2y =

cf. Section 20.3.

2 cos 39.46°
2 = 2004 . 033’ = 0. . = 0.
fanh 2x = 3004 + 0.333 ° 2x = 0500, x =0.25
2 sin 39.46°
2y = 25in39.46° _ e
fan2y = 3504 — 0333 2y = 25.40, y = 12.7

0.333/39.46° = tanh (0.25 + | 12.7°)

Reference fo sections 14.2 and 19.3 shows that the evaluation of the fractions
and the reading of the values 2 x and 2y from scales Th and T offer no diffi-
culties. To find 1/r, use either scales D and DI or the LogLog scales et* and e~X,
as scales of reciprocals.

24 arcsinrlp=x+jy

The solution in this case follows the procedure of section 22.1, with substitution
of the trigonometrical sine valve:

M —N

M2 = (a+1)2 4+ b2 sin x = 7
b

€os X

NZ = (a — 1)2 4 b2 sinhy =

Example: 0.552/22.4° = sin (x + jy)
From 0.552/22.4° = 0.51 + j[0.21,

cf. Section 21, ex. 1.

M2 = 1.512 4 0.212; M = 1.524

N2 = 0.492 + 0.212; N = 0.532

sinx=1'—52-——[‘;—ﬂ=0.496; x = 0.52
sinhy = 9.21 =0.242; y=0.24

cos 29.8°
225 arccosrjp=x+jy

A further modification of the equations of section 22.1 is all that is required:

M2 = (a + 1)2 + b2 cosx=M;N
b

2 (q — 1)2 2 ; =

N (a—1)%+b sinhy s

Example: 0.899/7.7° = cos (x +j ) cf. section 21, ex. 2

M2 = 1.8912 4 0.12052; M = 1.895
N2 = 0.1092 4 0.12052; N = 0.162
cos x = Lm_zi’ﬁ =0867; x =052

. 0.1205 )
sinhy = in298 = 0.242; y = 0.24
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226 arctanrfp=x+jy

The required formulae are:
2rcosp _ 2cosg

1—r2 r—r
2rsin 2 sin
14 r2 1r+r

tan 2 x =

tanh 2y =

23. Examples of application in practice

Several typical examples will be discussed to demonstrate the usefulness of the
ARISTO HyperLog and ARISTO Hyperbolog in electrical engineering calculations.
In view of the fact that various terminologies are used in electrical engineering,
the symbols employed in this text are listed below.

Symbols used in the complex representation of the Four Terminal Network and
Transmission Line Theory:

z Impedance Zoc Open Circuit Impedance
Y Admittance Zsc Short Circuit Impedance
Z, Characteristic Impedance

g =7 X | =a+ jb = Propagation Factor (Propagation Constant x length)

a Attenuation Factor (Attenuation Constant x length)

b Phase Factor (Phase Constant x length)

p Reflection Coefficient o Attenuation Constant
Y Propagation Constant B Phase Constant

Insertion of an attenuation mesh

It is required to insert an attenuation network with the attenuation factor 1.5 N
(13.03 d B) between a generator with an internal resistance of 60 ohms and ¢
load resistance of 60 ohms. Find the line resistance ry and the shunt resistance r,
in a T-type mesh,

The following equations of the net - - ——— e q
work theory are employed: go I no|
’ |
MV, =Vycoshg+ ZyJ,sinh g I |
(2) ZyJy = Vysinh g + ZyJ, cosh g | f2 | 609
The problem as presented prescribes: : :
g=a+jb=15+4j0. L - J
. N Fig. 86
With the receiving end open, equation -
(1) gives the voltage ratio: P o]
V2 [+ x
o o = = 15=12352 © FELTI}
(3) Voo cosh g = cosh o %
Then, dividing equation (1) by equa- ¢h 5 <t cash
tion (2) we obtain the open circuitinput Fia. 87 Q
impedance Zoc, viz.: ‘9.
15
Zoc _ coth g = coth 1.5 = 1.105 ™ <= tanh
ZO K x?
Set the cursor hairline to the value 1.5 3 ::
on scale Th and find the result 1.105 4 <X tan
below this value on scale DI. st < cot
<} arc
The open circuit voltage rafio can be s g:l:'
determined from the T-network: P e
rf+r ¢ x
vv1 =1t 22352 o Does 1
20c L] x
See equation (3) Fig. 88
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Since Zoc = Zo X coth g = 60 x 1.105 = 66.3 ohms

and Zoe = ry+ry = 66.3 ohms
it follows that r, = ﬁ = 28.2 ohms ry = 66.3 — 28.2 = 38.1 ohms
272382 ) 1 ) I

O.pe‘n circvit impedance and short circuit impedance of a copper trans-
mission cable 0.2 mm in dia. and 10 km in length.

LetZ; = Z,/¢p, where Z, = 670 ohms
@ = — 41.6°
a=0.814N
b = 0.843 rad = 48.3°
g=a++jb =0.814+ j48.3°
Determination of open circuit impedance:
Zoc = Z coth g = 670/— 41.6° x coth (0.814 + j 48.3°%)

cosh (0.814 +  48.3%)
= 670/— 41.6
[= 818 X R 081 +]48.5)

1.125/37°
= 670/— 41.6 x W = 642/— 63.7
Zoc = (284.2 — j 575) ohms
Determination of short circuit impedance:

1.173/59.1°
1.125[37°
Zsc = (659 — j 233) ohms

Complex voltage ratio of low pass filter

= 670/— 41.6° x = 699/— 19.5°

The .problem consists of finding the complex voltage ratio of a low pass filter
consisting of é similar T-sections with series resistance R = 10 kQ and shunt
capacitances C = 1 uF operating with

a frequency of 50 cycles. The complex 1042 10ks3
voltage ratio of a symmetrical four
terminal network with the receiving
end open is:
\4] —
= cosh —— #F
V2oc g
This equation is used to find the value
of g for o tion.
g ne section o— o
With R = 10% Q and Fig. 89
Y=mnxC=2x x 50 x 10-¢find
RxY = 3.142
Vi1

—_—=1 iRY =1 j3.142 =
Voue +j +j cosh g

arccosh (1 4 j3.142) =g=x+jy
14+j3142=a+jb

14+a=2 b=3142 M =3725 See chap. 19.2
1—a=0 b=23142 N =3142
M — N =0.583
cosy =1/, (M — N) = 0.2915 = 73.05°
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sinhx=£—y=%:’—';;%,=3.285 x = 1.905
g = 1.905 4 j 73.05°
Hence, for the 6 sections by simple addition of the transmission factors
69 =11.43 + j438.3° = 11.43 4 j78.3°

The voltage measured at the terminals of the sixth T-section, is denoted by V7.0
and the required relation is:

\{
! — cosh 6g = cosh (11.43 + | 78.3) = r/p
V7oc
tanp =tanhx X tany =1 X tany
p=y=783°
r = M = sinh x X 1
sing
r =sinh11.43 = 1? el1:43 = 1? (e3-175)2
= % 3052 = 4.66 x 10%
Vi
= 46600/78.3°
V7oc /_—‘

Measuring the input impedance of a sending or receiving antenna.

| antenn

transmuasion line

Let us assume that a slotted line with a . '
characteristic impedance of Zj = 60
ohms be connected with a transmission
line of the same characteristic impe-
dance.

generator

slotted line

The antenna at the end of the trans- .
mission line has an input impedance Fig. 90

whose magnitude and phase is to be measured at one point as a function of
frequency, A frequency of 100 mc corresponds to a wave length of 3 meters.

In order to eliminate the influence of the transmission line its terminals are
short-circuited at the end. Now measure the distance |; between the voltage
minimum and the end of the slotted line and likewise the values of the voltage
minimum and voltage maximum.

v .
The ratio between these two voltages is my = =" (the reciprocal of the

vaX
VSWR).

After reopening the circuit and reconnecting the antenna a second measurement
will produce the new values 1, and m,.
Letl; = 40 cm my = 0.15 (short-circuited)
l, =70cm m, = 0.70
The fundamental equations used in transmission line theory give us the re-
flection coefficient
zZ-17,
= =—— = plp
P=3z ¥z P
At an arbitrary point of the lossless line, at distance x from the end, the impe-
dance, which could be obtained by measurement if the left end were cut off,
can be expressed by the formula
y _ Vx _ eifx 4+ p x e~iBx
Z, Z,Jx eifx—p x eifx
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At the point of minimum voltage Vpin the expression p X e~ifx lags in phase by
exactly 180° relative to eifx, so that in this particular case we can write

Zy min 1+P@_1—p

Z, 1-p/80° 14 p

On the other hand, the reciprocal of the voltage standing wave ratio (VSWR) is:
Vmin_ _ 1— P
Vmax 14+ P

These voltages can be measured rather easily and their ratio then leads to the
value Zy min which must be retained for subsequent calculations.

m =

The evaluation of the problem will be considerably simplified by assuming the
input impedance Z fo be caused by a loss-sustaining transmission line, short
circuited at the end. This gives:

Z tanh ( ib
—— =tan

7, a+jb)
wherein g = a + j b is the propagation factor of this imaginary line which must
obviously have the characteristic impedance Z,. Now add the propagation
factors of the transmission line with the same impedance Z, and that of the
section of the slotted line up to the voltage minimum.

For the sum of these lines then:

Zx min
zO

where a’ + j b’ represents the propagation factor of the transmission line and
j b” that of the slotted line section up to the minimum, assuming the same to be
lossless. At the point of voltage minimum the impedance of the entire system has
no reactive component. This simplifies the determination of the propagation
factor.
(1) my = tanh (@’ 4+ j b’ 4+ jby"’) = 0.15
(2) m, =tanh (@ +jb+a +jb" +jb,) =070
To have a simplified notation set:

a/ + j b/ + i b1I/ = 91 b2// — b1// . (’
1) m, = tanh g4 = 0.15
) m, = tanh (gy + a +jb + jd) = 0.70
Since g4 is a real number which can be read on scale Th of the slide rule when
the cursor is aligned to m = 0.15 on D, we obtain: g, = 0.1512,
Similarly, by equation (2') g4 + a + j b + j § = 0.867

a+jb+jd=0.867 — 01512 = 0.7158

This equation gives a = 0.716, b = — 4. The value § is found by shifting the
minimum point from the first fo the second measurement. The propagation
constant y of the lossless slotted line is a pure phase constant, because in this

case the attenuation constant « is zero. Rence y = j f and the propagation factor
of the slotted line section between the minima of the two measurements is:

jo=1ip(y— 1.

=tanh{(a+jb+a +jb 4 jb")

Generally: 1 = 2z and thus

I, — 1|

. 21 70 — 40
id=ij2 == j 4
jd=j2n x 7 i2n 300

j6=i2nr x 0.1

or, in degrees: jo =j360° x 0.1 =j36°.
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We now have the complete propagation factor of the imaginary line:
g=a+jb=0716 —j36°

The final operation now consists in computing the complex value of Z with the

aid of the equation

_iz_ = tanh (a + j b) = tanh (0.716 — j 36°)
[

Chapter 20.3 shows how this expression is calculated.

0.977/— 49.8°

z
. 716 — j36°) = ——————" _ 868/ 25.8°
z tanh (0.716 — j 36°) T 205 868/

Then the final answer to our problem is the impedance:
Z = 60 x 0.868/— 25.8° = 52.1/— 25.8° = (47 — j 22.6) ohms

24. The cursor and its marks .

241 The mark 36

(Models 868, 0968, 869 and = -

0969 only) Cf o (@ = 2N
The cursor has, on the front face " * T
(fig. 91 resp. 93) a short line upper }\ N {
right, corresponding to the value \ N
36 on scales CF/DF, with respect \ \
to a value set on C/D under the N \
middle cursor line. This enables ¢ *u
multiplication by 36 to be per- - —@”’““"“_04
formed by cursor transfer from X =0 D
C/D to CF/DF, a convenience when Fig. 91 Fig. 92
converting:
1 hour = 3600 seconds L b W \
1m/s = 3.6 km/h - ..
1° = 3600 I ” * 4|
1009, = 360° // \\ \
1 year = 360 days I 1 I \ \{
1kWh = 3.6 x 106} o
N = 36 m 2 (conductivity) - : E—7. X ' 7

@ mm Fig. 93 Fig. 94

24.2 Circular areas, weights of bar steel

On the reverse face of the cursor (fig. 92 resp. 94) are two short lines, upper left
and lower right, displaced from the main cursor line by a distance proportionat
to the value /4 = 0.785, (referred to the scale of squares). These are used in
finding circular areas from the formula A = d2xr/4. If the main cursor line is
brought over the diameter on scale D, the area can be read on scale A under
the upper left short line. The same relationship holds between the lower right
and main cursor lines.

Where the metric system of measures is in use, these special cursor lines can be
used to find the weight of bar steel, because the specific weight of mild steel is
7.85 g/cm3. If the bar diameter is set on D with the main cursor line, the weig ht
of unit length is read at once under the upper left short line. The index 1 of
tcale B is set fo the reading under the upper left line and the cursor moved over
he total length of bar stock, to find the total weight.
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243 The marks kW and HP

The interval between the upper right line and the center line represents the
factor for converting kW to HP, and vice versa, on scale A (see fig. 92 resp. 94).

Hence, when the center hairline is set to 20 kW, for example, on the scale of
squares, then the upper right line indicates the equivalent in HP viz. 27.2.
Inversely, when the short right line is set to 7 HP the center line will produce
the equivalent 5.15 kW,

24.4 The gauge marks 2 = at the cursor L 0972

In addition to the mark 36, the front face of cursor pattern L 0972 (fig. 93) has
at left and right hand sides reference lines for the factor 2. These lines lie over
scales C/D, CF/DF and are interrupted lines, to avoid confusion with the prin-
cipal hairline. The 27 marks are of especial importance in frequency calculations.

Multiplication by 27 is accomplished by bringing the right hand 27 mark over
the factor involved and reading the product under the left hand 2n mark. The
converse procedure achieves division by 27,

Example 1: O O
if angular frequency w = 372 Hz 3N S

ool
from the relationship f = w/2n.

Move cursor to bring the left hand P! ---------- '{ b e ——k‘-l
27 mark over 3—7—2 on D. Beneath
the right hand 27 mark read f = e ——. L
59.2 Hz. - 7 =

Fig. 95 Fig. 96

Find the frequency f of an oscillator ‘l
_}_l

Example 2:

Find the inductive resistance X =
2nfL of a coil of frequency f = Ln
39.2 Hzand inductance L = 21.5mH. | ¥

Set 1 on CF under 5—9—2 on DF. l‘,// L//’

Then move cursor so that the right 2 ‘ | |
hand 27 mark is over 2—1—5 on
CF. The inductive resistance X = same C.]
8 Q can then be read on DF, under
the left hand 27 mark. Fig. 97 Fig. 98

In conjunction with the 27 marks reference to scale pairs C/D, CF/DF aliows
multiplication or division by 2 without slide setting. Multiplication by 2 follows
when the upper right hand 2z mark is brought over the relevant factor on DF.
On D beneath the left hand 27 mark the result is read at once. The converse
sequence of cursor sefting and reading provides the quotient of a division by 2.

25. The scale of preferred numbers 1364 (NZ scale)

25.1 Construction of the NZ scale

Standards and standardisation have become important factors in rationalised
production and in this technology preferred numbers assume ever greater
significance. Preferred numbers (BS 2045, ISOR 3, R17) are selected values
from a geometric series, developed from the denary number system. There is a
very useful relationship between the graduations of the fundamental scale D
and the associated mantissa scale L.
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Opposite the equal intervals of the mantissa scale L are the corresponding
plain numbers on scale D. The principal values tabulated as preferred numbers
(BS 2045, ISO R 3, R 17) are these numbers, rounded off.

A scale of preferred numbers can be derived if the D scale is disregarded and
the corresponding graduations of the mantissa scale are marked as preferred
numbers.

On scale 1364, the ten numbered divisions of the upper mantissa scale are
located over the preferred numbers of ihe R 10 series. The division of the man-
tissa scale into 20 equal divisions leads to the preferred numbers of the R 20
series and, with division into 40 equal intervals, to the R 40 series.

The preferred numbers are also marked against the mm scale: R 10 series by
arrow points, R 20 by graduated lines and R 40 by dots.

25.2 Objects of the NZ scale

Scale 1364 is, first of all, an aid o memory, serving to exhibit instantly the com-
monly used preferred numbers. These are also of practical use when construct-
ing single- and double-deck logarithmic graphs on normal squared graph
paper. Because the multiplication or division of a preferred number by a pre-
ferred number always yields a preferred number, a graph doubly divided in
preferred numbers serves for the graphic solution of problems.

The combination of preferred numbers and mantissas in a single scale offers
the advantage that logarithmic approximations are simplified. The preferred
numbers stand opposite the simplified logarithms of the mantissa scale and the
latter can easily be added or subtracted mentally. By prefixing the characteristic,
as must be done when using a table of logarithms, the decimal point can be
correctly placed and the error in the result is @ maximum of 3% if the R 40
series is used in the calculation.

In many cases the preferred number scale can equally well be used, if numbers
are strongly rounded off. For example, if we take 7z = 3.15, for y = 7.85 we
take y = 8. The mantissas corresponding to the preferred numbers are read
from the mantissa scale set over the preferred numbers. It is very important
to take into account the characteristic, on the presence of which this method of
calculation essentially depends.

With complicated formulae, it is of advantage to write down the logarithms as
read, so that a check can be made by addition. Natural numbers less than 1
(e. g., 0.8) are often best expressed as negative logarithms, e. g., Ig 0.8 = — 0.1
is better put in the form1g 0.8 =0.9 — 1.

The graduations of L and D offer a more exact method of logarithmic calculation,
since they provide, graphically, a three place table of logarithms.

25.3 Logarithmic scales

For the exact setting out of logarithmic scales or chart-nets, the scale 1364
carries logarithmically divided.scales of base length 200 mm, 150 mm, 100 mm,
50 mm and 25 mm. Base lengths 125 mm and 250 mm can be taken from the
slide scales of the rule.

25.4 Conversion factors for non-metric units

In the study of English, American and Continental literature, differences between
anglo-saxon and metric units of measurement give rise to difficuity and rela-
tionship between the system must often be laboriously searched for in hand-
books. This searching is obviated by the assembly of the most important con-
version factors in a table on scale 1364.
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