WARRANTY

This electronic calculator from Radio Shack is warranted to the original purchaser for a period of one year from the original purchase date — under normal use and service — against defective materials or workmanship.

Defective parts will be repaired, adjusted, and/or replaced at no charge when the calculator is returned prepaid to Radio Shack Calculator Service Center, shown below.

The warranty is void if the calculator has been visibly damaged by accident, misuse, or if the calculator has been serviced or modified by any person other than Radio Shack Calculator Service Center, or if the inside seal is broken.

This warranty contains the entire obligation of Radio Shack and no other warranties expressed, implied, or statutory are given.

The warranty is void unless the Purchase Registration Card has been properly completed and mailed to Radio Shack within 15 days of purchase.

DETACH AND MAIL CARD TO:

EC-425 SERVICE CENTER
P. O. BOX 22283
DALLAS, TEXAS 75222

Date of Purchase: __________________________

Serial Number: ____________________________

KEEP THIS CARD IN A SAFE PLACE

Printed in U.S.A. 86226
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALCULATOR DESCRIPTION</td>
<td>1</td>
</tr>
<tr>
<td>Features</td>
<td>1</td>
</tr>
<tr>
<td>OPERATING INSTRUCTIONS</td>
<td>3</td>
</tr>
<tr>
<td>Before Operation</td>
<td>3</td>
</tr>
<tr>
<td>On/Off Switch</td>
<td>3</td>
</tr>
<tr>
<td>Keyboard Description</td>
<td>3</td>
</tr>
<tr>
<td>Display Description</td>
<td>6</td>
</tr>
<tr>
<td>Scientific Notation</td>
<td>7</td>
</tr>
<tr>
<td>OPERATING EXAMPLES</td>
<td>8</td>
</tr>
<tr>
<td>Entry and Calculation Overflow</td>
<td>8</td>
</tr>
<tr>
<td>Addition and Subtraction</td>
<td>8</td>
</tr>
<tr>
<td>Multiplication and Division</td>
<td>9</td>
</tr>
<tr>
<td>Positive and Negative Number Calculations</td>
<td>10</td>
</tr>
<tr>
<td>Mixed Calculations</td>
<td>11</td>
</tr>
<tr>
<td>Reciprocals</td>
<td>11</td>
</tr>
<tr>
<td>Squares</td>
<td>12</td>
</tr>
<tr>
<td>Square Roots</td>
<td>12</td>
</tr>
<tr>
<td>Error Corrections</td>
<td>13</td>
</tr>
<tr>
<td>ADVANCED MATHEMATICAL METHODS</td>
<td>15</td>
</tr>
<tr>
<td>Sum of Products</td>
<td>15</td>
</tr>
<tr>
<td>Sum of Quotients</td>
<td>17</td>
</tr>
<tr>
<td>Reciprocal of Sum of Reciprocals</td>
<td>18</td>
</tr>
<tr>
<td>Square Root of Sum of Squares</td>
<td>19</td>
</tr>
<tr>
<td>Quadratic Equations</td>
<td>20</td>
</tr>
<tr>
<td>Powers and Roots</td>
<td>21</td>
</tr>
<tr>
<td>Trigonometric Functions</td>
<td>25</td>
</tr>
<tr>
<td>Inverse Trigonometric Functions</td>
<td>28</td>
</tr>
<tr>
<td>Logarithmic and Exponential Functions</td>
<td>30</td>
</tr>
<tr>
<td>SAMPLE PROBLEMS</td>
<td>34</td>
</tr>
<tr>
<td>Geometry</td>
<td>34</td>
</tr>
<tr>
<td>Physics</td>
<td>35</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>39</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>41</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>43</td>
</tr>
<tr>
<td>SERVICE INFORMATION</td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CALCULATOR DESCRIPTION</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Your EC-425 Electronic Slide Rule Calculator is designed especially for use by scientists, engineers, and students who require a portable, highly accurate, and reliable computation tool. The EC-425 is capable of solving a wide range of complex scientific problems; it will also solve the simplest arithmetic problem. Designed with state-of-the-art MOS solid-state circuitry, constructed with high quality components throughout, and assembled with precise workmanship, your EC-425 should provide years of reliable service.</td>
<td></td>
</tr>
<tr>
<td>Features</td>
<td></td>
</tr>
<tr>
<td>Fully Portable — Extremely lightweight. Battery or AC operated.</td>
<td></td>
</tr>
<tr>
<td>Versatile — Performs addition, subtraction, multiplication and division. Also, reciprocals, squares, square roots, chain and mixed calculations, all in full floating decimal point. Automatic conversion to scientific notation when calculated answer exceeds eight digits.</td>
<td></td>
</tr>
<tr>
<td>Easy to Operate — Operations are performed in the same order as with classical slide rules. For simple arithmetic operations, just touch the numbers and functions as you would write them on paper. Automatic clearing — no need to touch clear key between problems.</td>
<td></td>
</tr>
<tr>
<td>Long Life — Solid-state components, integrated circuits, and a display using light emitting diodes provide dependable operation and long life.</td>
<td></td>
</tr>
<tr>
<td>Rechargeable Batteries — The EC-425 calculator comes complete with fast charge nickel-cadmium batteries which will provide 4-6 hours of operation without recharging under normal use. About 3 hours of recharging will restore full charge to the batteries.</td>
<td></td>
</tr>
</tbody>
</table>
Overflow — \pm sign on display indicates calculation overflow. \pm indicates negative calculation overflow.

AC Adapter/Charger — Recharge or direct operation from standard outlets — 115 V, 60 Hz or 230 V, 50 Hz — is easily accomplished with the AC Adapter/Charger included with the EC-425 calculator. Just plug the AC Adapter/Charger into a convenient outlet and the attached cord into the calculator. You can operate your calculator indefinitely while connected to the AC Adapter/Charger as the batteries cannot be overcharged.

Do not attempt to operate calculator with charger plugged in unless batteries are in place.

Battery Saver Circuit — To save battery power the light emitting diode display turns off automatically between 15 and 60 seconds after the last keyboard entry, except for the first digit. If the display turns off while entering a problem, the display turns on automatically with the first keyboard entry. To bring back the last calculated result to the display, depress the \pm key.

Therefore, the number in the first digit on the display is a double reminder — that you have an entry or calculation waiting in your calculator or that your calculator is in the power ON position.

OPERATING INSTRUCTIONS

Before Operation

The fast charge nickel-cadmium batteries furnished with your calculator were fully charged at the factory, but may require charging before initial battery operation due to shelf life discharging.

You can operate your calculator while it's being charged. Just plug the charger cord into the calculator and the charger into a convenient outlet. You can now calculate while you charge — a full charge requires only 3 hours when switch is off or 6 hours while in normal operation.

It is recommended that you recharge the batteries periodically and that you refrain from running the power source to zero, as this type of operation may reduce the life of the batteries.

On/Off Switch

The on/off switch is located on the top right surface of the calculator. It is a horizontally operated slide switch which applies power when pushed to the right, and removes power when pushed to the left. The power-on condition is indicated by illumination of the first digit in the mantissa on the right of the display.

Keyboard Description

The keyboard consists of 23 keys, which may be classified as data entry keys, basic function keys, and special function keys.

Data Entry Keys

0 through 9 Digit Keys — Enters numbers 0 through 9 to a limit of an 8-digit mantissa and a 2-digit exponent.
Decimal Point Key — Enters a decimal point.

Enter Exponent Key — Instructs the calculator that
the subsequent number is to be entered as an exponent
of 10. To enter a number in scientific notation, first enter
the mantissa, press EE and enter the desired exponent
of 10. After the EE key has been pressed, the
calculator will display all further results in scientific
notation until the C key is pressed.

Change Sign Key — Instructs the calculator to
change the sign of the mantissa or exponent appearing in
the display. To enter a negative number, first enter the
number and then press the z key. Using this change
sign key prior to using the EE key changes the sign of
the mantissa. If the z key is pressed after the EE key,
the sign of the exponent is changed.

Clear Key — Clears (erases) information in calculator
and display and sets calculator to zero for start of new
problem.

Clear Display Key — Clears the last number entered
manually in the keyboard or the last calculator result,
whichever is displayed. The CD key can be used to
correct entry of an erroneous basic function key as well as
an erroneous number entry. If a + or a - key is
pressed in error, the CD key can be used to clear the
display to zero before pressing the correct function key.
This method nullifies the error by adding or subtracting 0
from the previous calculation result. If an erroneous x
or = key is pressed, the CD key can be used to clear the
display before entering 1 and pressing the correct
function key. In this case, the error is nullified by
multiplying or dividing the previous calculation result by
unity.

Function Keys

Add Key — Instructs the calculator to add to the
previous number or result the next entered quantity.

Subtract Key — Instructs the calculator to subtract
from the previous number or result the next entered
quantity.

Multiply Key — Instructs the calculator to multiply
the previous number or result by the next entered
quantity.

Divide Key — Instructs the calculator to divide the
previous number or result by the next entered
quantity.

Equals Key — Instructs the calculator to complete
the previously entered operation to provide the desired
calculation result.

Reciprocal Key — Completes any previous
calculation and then finds the reciprocal of this result
(that is, divides the result into 1).

Square Key — Completes any previous calculation
and then squares this result (that is, multiplies the result
by itself).

Square Root Key — Completes any previous
calculation and then finds the square root of this result
(that is, finds the number which multiplied by itself,
equals the result.

Note: Repeated pressing of the function keys are not
ignored. For example, the sequence 5 + x or
5 + = will give 10 on the display. This can be used
to obtain a x 2 function.
Display Description

In addition to power-on indication and numerical information, the display provides indication of a negative number, decimal point, overflow, underflow and error.

Minus Sign — Appears to the left of the 8-digit mantissa to indicate negative numbers, and appears on the left of the exponent (right of mantissa) to indicate negative exponents.

Decimal Point — Automatically assumed to be to the right of any number entered unless positioned in another sequence by use of \(\text{c} \) key. When entering numbers, the decimal will not appear until \(\text{c} \) is pressed.

Calculation Overflow — \(\mathcal{E} \) appears on left side of display to indicate a result larger than \(9.9999999 \times 10^{99} \) or smaller than \(1.0000000 \times 10^{-99} \).

Error Indication — The EC-425 calculator always attempts to give the most accurate results. If the calculator is instructed to find the square root of a negative value, it will calculate the square root of the positive value and an \(\mathcal{E} \) will appear at the left of the display.

Indication Removal — The display indication caused by overflow, underflow, or error will continue until the \(\text{C} \) key is pressed.

Scientific Notation

Any number can be entered into the EC-425 in scientific notation — that is, as a number (mantissa) multiplied by 10 raised to some power (exponent). For example 1000 can be written as \(1 \times 10^3 \).

\[
\begin{array}{ccc}
\text{Enter} & \text{Press} & \text{Display} \\
1 & \mathcal{E} & 1 \ 00 \\
3 & & 1 \ 03 \\
\end{array}
\]

Note: The last two digits on the right side of the display are used to indicate exponents.

Very large and very small numbers must be entered in scientific notation. For example, \(110,000,000,000 \) is written as \(1.1 \times 10^{11} \).

\[
\begin{array}{ccc}
\text{Enter} & \text{Press} & \text{Display} \\
1.1 & \mathcal{E} & 1.1 \ 00 \\
11 & & 1.1 \ 11 \\
\end{array}
\]

In both these examples, the exponent indicates how many places the decimal should be moved to the right. If the exponent is negative, the decimal should be moved to the left. For example \(1.1 \times 10^{-11} = 0.000,000,000,011 \)

\[
\begin{array}{ccc}
\text{Enter} & \text{Press} & \text{Display} \\
1.1 & \mathcal{E} & 1.1 \ 00 \\
11 & \text{Z} & 1.1 \ -11 \\
\end{array}
\]

Note: The negative sign for the exponent appears immediately to the left of the exponent (to the right of the mantissa).

By using scientific notation, you can retain 8 significant digit accuracy even on numbers less than unity (1). If you use the \(\mathcal{E} \) key in a calculation, all results will remain in scientific notation until you press the \(\text{C} \) key.
OPERATING EXAMPLES

Performing calculations with your EC-425 calculator is easy. Numbers and functions are entered in the same sequence as the expression is written on paper. The following examples should help in learning to properly operate the calculator.

The EC-425 automatically clears itself between most calculations. Any prior calculation result is cleared if a number key is pressed without having had a basic function key other than \(= \) pressed beforehand.

Note: Immediately after turning on the calculator and before performing any calculations, press the \(\boxed{C} \) key. Although a zero may appear in the display, it is possible for some other number to be carried internally.

Entry and Calculation Overflow

The calculator will ignore any mantissa digits entered in excess of eight and will use the last two exponent digits entered as shown in the display.

If a calculation result is more than eight digits before the decimal, it is automatically converted to a scientific notation. If a calculation result is greater than 9.9999999 \(\times \) 10^99, the signal \(\boxed{E} \) will be displayed with the answer. The answer shown will normally be correct, but only the last two digits of the exponent will be displayed.

Caution: When overflow or underflow occurs, and \(\boxed{E} \) appears at left of display, the calculator is not locked out and will continue to perform operations.

Addition and Subtraction

Example: \(4.23 + 4 = 8.23 \)

<table>
<thead>
<tr>
<th>Enter</th>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.23</td>
<td>\boxed{+}</td>
<td>4.23</td>
</tr>
<tr>
<td>4</td>
<td>\boxed{=}</td>
<td>8.23</td>
</tr>
</tbody>
</table>

Example: \(6 - 1.854 = 4.146 \)

<table>
<thead>
<tr>
<th>Enter</th>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>\boxed{-}</td>
<td>6.</td>
</tr>
<tr>
<td>1.854</td>
<td>\boxed{=}</td>
<td>4.146</td>
</tr>
</tbody>
</table>

Example: \(12.32 - 7 + 1.6 = 6.92 \)

<table>
<thead>
<tr>
<th>Enter</th>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.32</td>
<td>\boxed{-}</td>
<td>12.32</td>
</tr>
<tr>
<td>7</td>
<td>\boxed{+}</td>
<td>5.32</td>
</tr>
<tr>
<td>1.6</td>
<td>\boxed{=}</td>
<td>6.92</td>
</tr>
</tbody>
</table>

Example: \(-5.35 - (-4.2) - 3.1 = -4.25 \)

<table>
<thead>
<tr>
<th>Enter</th>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.35</td>
<td>\boxed{-}</td>
<td>-5.35</td>
</tr>
<tr>
<td>4.2</td>
<td>\boxed{+}</td>
<td>-1.15</td>
</tr>
<tr>
<td>3.1</td>
<td>\boxed{=}</td>
<td>-4.25</td>
</tr>
</tbody>
</table>

Multiplication and Division

Example: \(27.2 \times 18 = 489.6 \)

<table>
<thead>
<tr>
<th>Enter</th>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.2</td>
<td>\boxed{\times}</td>
<td>27.2</td>
</tr>
<tr>
<td>18</td>
<td>\boxed{=}</td>
<td>489.6</td>
</tr>
</tbody>
</table>

Example: \(11.7 \div 5.2 = 2.25 \)

<table>
<thead>
<tr>
<th>Enter</th>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.7</td>
<td>\boxed{\div}</td>
<td>11.7</td>
</tr>
<tr>
<td>5.2</td>
<td>\boxed{=}</td>
<td>2.25</td>
</tr>
</tbody>
</table>

Example: \((4 \times 7.3) \div 2 = 14.6 \)

<table>
<thead>
<tr>
<th>Enter</th>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>\boxed{\times}</td>
<td>4</td>
</tr>
<tr>
<td>7.3</td>
<td>\boxed{\div}</td>
<td>29.2</td>
</tr>
<tr>
<td>2</td>
<td>\boxed{=}</td>
<td>14.6</td>
</tr>
</tbody>
</table>

Note: Intermediate result of multiplication is displayed when next \(\boxed{\times} \) or \(\boxed{\div} \) key is pressed; it is not necessary to press the \(\boxed{=} \) key to obtain the intermediate result. Nor is it necessary to re-enter the intermediate result for further calculations.
Positive and Negative Number Calculations

A negative sign is assigned to a number by pressing the \(- \) key directly after entering the number.

Example: \(7 \times -18.5 = -129.5 \)

\[
\begin{array}{ccc}
\text{Enter} & \text{Press} & \text{Display} \\
7 & \times & 7. \\
18.5 & \text{ } & \equiv & -129.5
\end{array}
\]

Example: \(-125 \div 5 = -25 \)

\[
\begin{array}{ccc}
\text{Enter} & \text{Press} & \text{Display} \\
125 & \div & -125. \\
5 & \equiv & -25.
\end{array}
\]

Alternate Methods:

\[
\begin{array}{ccc}
\text{Enter} & \text{Press} & \text{Display} \\
125 & \equiv & -125. \\
5 & \equiv & -25.
\end{array}
\]

Mixed Calculations

Example: \((8.3 + 2) \div 4 - 6.8 = -4.225 \)

\[
\begin{array}{ccc}
\text{Enter} & \text{Press} & \text{Display} \\
8.3 & + & 8.3 \\
2 & \div & 10.3 \\
4 & \equiv & 2.575 \\
6.8 & \equiv & -4.225
\end{array}
\]

Example: \((-5.2 - 3) \times 4 + 55.2 \div 4 = 5.6 \)

\[
\begin{array}{ccc}
\text{Enter} & \text{Press} & \text{Display} \\
5.2 & \equiv & -5.2 \\
3 & \times & -8.2 \\
4 & + & -32.8 \\
55.2 & \equiv & 22.4 \\
4 & \equiv & 5.6
\end{array}
\]

Reciprocals

Example: \(\frac{1}{3.2} = 0.3125 \)

\[
\begin{array}{ccc}
\text{Enter} & \text{Press} & \text{Display} \\
3.2 & \equiv & 0.3125
\end{array}
\]

Example: \(5.3 \div (3.1 + 4.3) = 0.716216 \)

\[
\begin{array}{ccc}
\text{Enter} & \text{Press} & \text{Display} \\
3.1 & + & 3.1 \\
4.3 & \equiv & 7.4 \\
5.3 & \equiv & 0.716216
\end{array}
\]

Note: When operating on an expression containing functions enclosed in parenthesis, it is necessary to complete the calculation within the parenthesis first to avoid re-entering intermediate results.
Example: \(\frac{1}{1.1 \times 10^{18}} = 9.090909 \times 10^{17} \)

Enter	Press	Display
1.1	EE	1.1 00
18	x²	1.1 –18
		9.090909 17

Squares

Example: \((4.2)^2 = 17.64\)

Enter	Press	Display
4.2 | x² | 17.64

Example: \((9999999)^2 = 9.9999998 \times 10^{15}\)

Enter	Press	Display
9999999 | x² | 9.9999998 15

Example: \((2.1 \times 10^4)^2 = 4.41 \times 10^8\)

Enter	Press	Display
2.1 | EE | 2.1 00
4 | x² | 4.41 08

Square Roots

Example: \(\sqrt{6.25} = 2.5\)

Enter	Press	Display
6.25 | x√ | 2.5

Example: \(\sqrt{1.1 \times 10^8} = 1.0488088 \times 10^0\)

Enter	Press	Display
1.1 | EE | 1.1 00
8 | x√ | 1.0488088 04

Error Corrections

If a wrong key is accidentally pressed during a calculation (particularly a long one), it is often desirable to correct the error rather than to clear the calculator and begin again.

Corrections can be made to numerical errors in a series of mixed calculations only if the CD key is pressed before the next function key in the sequence is pressed.

Example: \(3.2 \times 44 \div 5 = 2.816\)

<table>
<thead>
<tr>
<th>Enter</th>
<th>Press</th>
<th>Display</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>x</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td></td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CD</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>÷</td>
<td>14.08</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>=</td>
<td>2.816</td>
<td></td>
</tr>
</tbody>
</table>

A basic function error made in a series of mixed calculations can be corrected through use of the CD and 1 keys.

If an error is made by erroneously pressing the + or – key, you need only clear the display by pressing the CD key and then pressing the correct key.

Example: \(5 + 9.7 \div 2.3 = 12.4\)

<table>
<thead>
<tr>
<th>Enter</th>
<th>Press</th>
<th>Display</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>+</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>9.7</td>
<td>+</td>
<td>14.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CD</td>
<td>14.7</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>=</td>
<td>12.4</td>
<td></td>
</tr>
</tbody>
</table>

Note: In essence, this method adds zero to (or subtracts zero from) the previous number or result.
If an error is made by erroneously pressing the \times or \div key, it is corrected by multiplying or dividing the interim result by unity.

Example: $4.1 \times 3.2 \div 2 = 6.56$

<table>
<thead>
<tr>
<th>Enter</th>
<th>Press</th>
<th>Display</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>\times</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>\times</td>
<td>13.12</td>
<td>Error</td>
</tr>
<tr>
<td>1</td>
<td>\div</td>
<td>13.12</td>
<td>Correction</td>
</tr>
<tr>
<td>2</td>
<td>\equiv</td>
<td>6.56</td>
<td></td>
</tr>
</tbody>
</table>

Example: $4.1 \times 3.2 \div 2 = 6.56$

<table>
<thead>
<tr>
<th>Enter</th>
<th>Press</th>
<th>Display</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>\times</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>\times</td>
<td>13.12</td>
<td>Error</td>
</tr>
<tr>
<td>2</td>
<td>CD</td>
<td>0</td>
<td>Display Cleared</td>
</tr>
<tr>
<td>1</td>
<td>\div</td>
<td>13.12</td>
<td>Correction</td>
</tr>
<tr>
<td>2</td>
<td>\equiv</td>
<td>6.56</td>
<td></td>
</tr>
</tbody>
</table>

Note: If a number has been entered after the erroneous function key, it is necessary to clear the display before entering unity into the calculator.

ADVANCED MATHEMATICAL METHODS

Rewriting Equations

Many complex problems with interim calculations can be solved easily with the EC-425 by rewriting the problem in a sequential operation. This often eliminates the necessity of writing down several interim results and then re-entering these interim results to obtain the final solution.

Sum of Products

You can calculate the sum of two products such as $(A \times B) + (C \times D)$ without writing down any intermediate answers, if the equation is rewritten as

$$
\left(\frac{A \times B}{D} + C \right) D
$$

For example, $(3 \times 4) + (5 \times 6) = \left(\frac{3 \times 4}{6} + 5 \right) \times 6$

<table>
<thead>
<tr>
<th>Enter</th>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>\times</td>
<td>3.</td>
</tr>
<tr>
<td>4</td>
<td>\div</td>
<td>12.</td>
</tr>
<tr>
<td>6</td>
<td>$+$</td>
<td>2.</td>
</tr>
<tr>
<td>5</td>
<td>\times</td>
<td>7.</td>
</tr>
<tr>
<td>6</td>
<td>\equiv</td>
<td>42.</td>
</tr>
</tbody>
</table>

Note that it is necessary to enter one of these quantities twice (6). However, this is usually easier than recording and re-entering an interim result. Also, you can select the simplest of the four quantities to enter twice.
This method can be extended to calculate the sum of any number of products.

\[
\left(\frac{A \times B}{D} + C \right) \frac{D}{F} + E \right]
\times F
\]

or

\[
\left(\frac{A \times B}{D} + C \right) \frac{D}{F} + E \right]
\times F
\]

For example, \((3 \times 4) + (5 \times 6) + (7 \times 8)\) becomes

\[
\left[\frac{3 \times 4}{6} + 5 \right] \times 8 + 7 \right]
\times 8
\]

Sum of Quotients

The sum of quotients can also easily be calculated.

\[
\frac{A}{B} + \frac{C}{D} + \frac{E}{F} = \left[\left(\frac{A \times D}{B} + C \right) \frac{D}{F} + E \right] / F
\]

This calculation can also be extended to as many terms as desired

\[
\frac{A}{B} + \frac{C}{D} + \frac{E}{F} = \left[\left(\frac{A \times D}{B} + C \right) \frac{D}{F} + E \right] / F
\]

For example,

\[
\frac{3}{4} + \frac{5}{6} + \frac{7}{8} = \left[\left(\frac{3 \times 6}{4} + 5 \right) \times 8 + 7 \right] / 8
\]

<table>
<thead>
<tr>
<th>Enter</th>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>×</td>
<td>3.</td>
</tr>
<tr>
<td>4</td>
<td>÷</td>
<td>12.</td>
</tr>
<tr>
<td>6</td>
<td>÷</td>
<td>2.</td>
</tr>
<tr>
<td>5</td>
<td>×</td>
<td>7.</td>
</tr>
<tr>
<td>6</td>
<td>÷</td>
<td>42.</td>
</tr>
<tr>
<td>8</td>
<td>÷</td>
<td>5.25</td>
</tr>
<tr>
<td>7</td>
<td>×</td>
<td>12.25</td>
</tr>
<tr>
<td>8</td>
<td>÷</td>
<td>98.</td>
</tr>
</tbody>
</table>

The procedure can be extended to calculate the sum of as many products as desired.
If you calculate these terms separately and call them up you notice that the last digit in the answer should be a 3 instead of a 2. This “error” results from the calculator truncating the quotient of 75/6 as 12.666666 (six places after the decimal, which is subsequently divided by 8 yielding an answer with seven places after the decimal). Because of the interim calculations, the answer is only correct to six places after the decimal.

Reciprocal of the Sum of Reciprocals

A special case of the sum of products frequently occurs in engineering. For example, the equivalent resistance of resistors in parallel is given below.

\[
\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \ldots
\]

For three resistors in parallel, this equation can be rewritten as

\[
R_T = \left\{ \left(\frac{R_2}{R_1} + 1 \right) \times \frac{R_3}{R_2} + 1 \right\} \times \frac{1}{R_3}
\]

For \(R_1 = 10 \text{ Ohms}, \ R_2 = 20 \text{ Ohms} \) and \(R_3 = 30 \text{ Ohms} \)

For example, \(\sqrt{3^2 + 4^2} = \left\{ \left(\frac{3}{4} \right)^2 + 1 \right\}^{1/2} \times 4 \)

<table>
<thead>
<tr>
<th>Enter</th>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>+</td>
<td>3.</td>
</tr>
<tr>
<td>4</td>
<td>×² +</td>
<td>0.5625</td>
</tr>
<tr>
<td>1</td>
<td>×</td>
<td>1.25</td>
</tr>
<tr>
<td>4</td>
<td>=</td>
<td>5.</td>
</tr>
</tbody>
</table>

This method can also be extended to as many terms as desired. The square root of the sum of three squares \(\sqrt{A^2 + B^2 + C^2} \) equals

\[
\left\{ \left(\frac{A}{B} \right)^2 + 1 \right\}^{1/2} \times \frac{B}{C} \left\{ \left(\frac{C}{B} \right)^2 + 1 \right\}^{1/2} \times C
\]

Although this looks very complicated, it is very simple to perform on the EC-425.

For example, to calculate \(\sqrt{3^2 + 4^2 + 12^2} \)

<table>
<thead>
<tr>
<th>Enter</th>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>+</td>
<td>3.</td>
</tr>
<tr>
<td>4</td>
<td>×² +</td>
<td>0.5625</td>
</tr>
<tr>
<td>1</td>
<td>×</td>
<td>1.25</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>5.</td>
</tr>
<tr>
<td>12</td>
<td>×² +</td>
<td>0.1736111</td>
</tr>
<tr>
<td>12</td>
<td>×</td>
<td>1.0833333</td>
</tr>
<tr>
<td>12</td>
<td>=</td>
<td>12.999999</td>
</tr>
</tbody>
</table>
As you know, the correct answer should be 13, which means that we are off 1 digit in the eighth place.

Quadratic Equations

You can easily solve quadratic equations on the EC-425. For the equation, \(Ax^2 + Bx + C = 0 \), the solution is normally written:

\[
x = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}
\]

If this is rewritten in sequential form, we get

\[
x = \frac{\pm \left(\sqrt{(B^2 - 4AC)} - 1 \right) \times (-4AC) + 1}{2A}
\]

For example, to find the root of the equation \(3x^2 + 7x + 4 = 0 \):

<table>
<thead>
<tr>
<th>Enter</th>
<th>Press</th>
<th>Display</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>EE (\times^2)</td>
<td>4.9 01</td>
<td>Scientific</td>
</tr>
<tr>
<td></td>
<td>(\times)</td>
<td>2.0408163 -02</td>
<td>Notation</td>
</tr>
<tr>
<td>4</td>
<td>(\times)</td>
<td>-8.1632652 -02</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(\times)</td>
<td>-2.4489795 -01</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(\times)</td>
<td>-9.795918 -01</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(\times)</td>
<td>1.4285727 -01</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>(\times)</td>
<td>1.0000008 00</td>
<td>Intermediate</td>
</tr>
<tr>
<td>7</td>
<td>(\times)</td>
<td>-5.9999992 00</td>
<td>Answer</td>
</tr>
<tr>
<td>2</td>
<td>(\times)</td>
<td>-2.9999996 00</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(\times)</td>
<td>-9.9999986 -01</td>
<td>Root 1</td>
</tr>
<tr>
<td>1.0000008</td>
<td>(\times)</td>
<td>-1.0000008</td>
<td>Re-enter</td>
</tr>
<tr>
<td></td>
<td>(\times)</td>
<td>-1.0000008</td>
<td>Intermediate</td>
</tr>
<tr>
<td>7</td>
<td>(\times)</td>
<td>-8.0000008 00</td>
<td>Answer as</td>
</tr>
<tr>
<td>2</td>
<td>(\times)</td>
<td>-4.0000004 00</td>
<td>Negative</td>
</tr>
<tr>
<td>3</td>
<td>(\times)</td>
<td>-1.3333334 00</td>
<td>Root 2</td>
</tr>
</tbody>
</table>

Note that the only re-entry was to determine the root with the negative radical component. In this example, the first answer is accurate to 6 places, and the second to 7 places. If we had not pressed the **EE** key so that the calculator operated in scientific notation, our answer would only have been correct to 5 places.

Powers and Roots

You can use the EC-425 to calculate any integer power or root of any number. To calculate any integer power, it is only necessary to use the \(\times^2 \), \(\times \), and \(\div \) function keys. To calculate any integer roots, an iteration process is used.

Powers

To calculate any integer power through the tenth, you only need to enter the quantity twice.

<table>
<thead>
<tr>
<th>To Calculate</th>
<th>Enter</th>
<th>Press</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A^2)</td>
<td>(\times^2)</td>
<td>4.9 01</td>
</tr>
<tr>
<td>(A^3 = A^2 \times A)</td>
<td>(\times)</td>
<td>(\times^2) (\times)</td>
</tr>
<tr>
<td>(A^4 = (A^2)^2)</td>
<td>(\times)</td>
<td>(\times^2) (\times^2) (\times)</td>
</tr>
<tr>
<td>(A^5 = A^4 \times A)</td>
<td>(\times)</td>
<td>(\times^2) (\times^2) (\times)</td>
</tr>
<tr>
<td>(A^6 = (A^3)^2)</td>
<td>(\times)</td>
<td>(\times^2) (\times^2)</td>
</tr>
<tr>
<td>(A^7 = A^6 \div A)</td>
<td>(\times)</td>
<td>(\times^2) (\times^2) (\times^2) (\div)</td>
</tr>
<tr>
<td>(A^8 = [(A^2)^2]^2)</td>
<td>(\times)</td>
<td>(\times^2) (\times^2) (\times^2) (\times^2)</td>
</tr>
<tr>
<td>(A^9 = A^8 \times A)</td>
<td>(\times)</td>
<td>(\times^2) (\times^2) (\times^2) (\times)</td>
</tr>
<tr>
<td>(A^{10} = (A^5)^2)</td>
<td>(\times)</td>
<td>(\times^2) (\times^2) (\times)</td>
</tr>
</tbody>
</table>
Because the EC-425 has a \(\sqrt[n]{} \) key, you can calculate the fourth, eighth, sixteenth, etc., root without any difficulty.

<table>
<thead>
<tr>
<th>To Calculate</th>
<th>Enter</th>
<th>Press</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sqrt{N})</td>
<td>N</td>
<td>(\sqrt[n]{})</td>
</tr>
<tr>
<td>(\sqrt[4]{N})</td>
<td>N</td>
<td>(\sqrt[n]{})</td>
</tr>
<tr>
<td>(\sqrt[8]{N})</td>
<td>N</td>
<td>(\sqrt[n]{})</td>
</tr>
</tbody>
</table>

To calculate other integer roots, it is necessary to use an iterative process based on Newton's Method.

<table>
<thead>
<tr>
<th>To Calculate</th>
<th>Equation</th>
<th>(A_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sqrt[3]{N})</td>
<td>((N/A_1^3 + 2) A_1/3 = A_2)</td>
<td>4.2291666</td>
</tr>
<tr>
<td>(\sqrt[5]{N})</td>
<td>((N/A_1^5 + 4) A_1/5 = A_2)</td>
<td>75</td>
</tr>
<tr>
<td>(\sqrt[6]{N})</td>
<td>((N/A_1^6 + 5) A_1/6 = A_2)</td>
<td>4.2291666</td>
</tr>
<tr>
<td>(\sqrt[7]{N})</td>
<td>((N/A_1^7 + 6) A_1/7 = A_2)</td>
<td>3</td>
</tr>
<tr>
<td>(\sqrt[n]{N})</td>
<td>([N/A_1^n + (n - 1)] A_1/n = A_2)</td>
<td>4.217197</td>
</tr>
</tbody>
</table>

To use these equations, it is necessary to make an initial approximation which is used to derive a more exact one. Fortunately, the process converges rather rapidly to the correct answer.

For example, to find the cube root of 75, we begin with an approximation of \(A_1 = 4 \).

Since this method will involve taking the reciprocals of numbers between 64 and 75, maximum accuracy is maintained by having the calculator operate in scientific notation.
Note the increase in accuracy with each iteration. The first approximation (or guess) was correct to 1 significant figure (4); the second, to 3 significant figures (4.22); the third, to 5 significant figures (4.2172); and the fourth, to 7 significant figures (4.217163). Also note that the method provides an optional check on the accuracy of the approximation in the beginning of the next iteration by pressing the equal key before taking the reciprocal.

Not only are the methods for higher roots very similar (which helps in memorizing them) but they are practically no more complex. For example, to find the fifth root of 8000, we begin with an approximation of 6.

<table>
<thead>
<tr>
<th>Enter</th>
<th>Press</th>
<th>Display</th>
<th>Remarks</th>
</tr>
</thead>
</table>
| 6
| EE
| 6 00
| A1 |
| 1.296
| 03 |
| 6
| =
| 7.776
| 03 |
| Optional |
| 1.2860082
| -04 |
| Check |
| 8000
| +
| 1.0288065
| 00 |
| Check |
| 4
| x
| 5.0288065
| 00 |
| 6
| =
| 3.0172839
| 01 |
| 5
| =
| 6.0345678
| 00 |
| A2 |
| 1.3261256
| 03 |
| 6.0345678
| =
| 8.0025948
| 03 |
| Optional |
| 1.2495946
| -04 |
| Check |
| 8000
| +
| 9.9967568
| -01 |
| 4
| x
| 4.9996756
| 00 |
| 6.0345678
| =
| 3.0170881
| 01 |
| 5
| =
| 6.0341762
| 00 |
| A3 |
| 1.3257814
| 03 |
| 6.0341762
| =
| 7.9999985
| 03 |
| Check |

Not that, in this example, the accuracy increased from 1 significant figure in A1 (6) to 4 significant figures in A2 (6.034) and to 7 significant figures in A3 (6.034176). In general, 7 significant figures is the maximum that can be obtained because of truncation errors. In this example, the eighth digit should be a 3 instead of a 2.

Trigonometric Functions

You can greatly augment the capability of the EC-425 by using tables of trigonometric and logarithmic values, such as *C.R.C. Standard Mathematical Tables* published by Chemical Rubber Co., 18901 Cranwood Parkway, Cleveland, Ohio 44128.

However, you can also use the EC-425 to calculate the value of these transcendental functions. In general, values to four or five significant figures can be calculated using the recommended expression. A more complex expression is also given for cases where additional accuracy is needed.

The following expressions for the values of trigonometric functions are derived from the Taylor Series expansions, especially modified for use with the EC-425 calculator. As a result, the trigonometric and inverse trigonometric functions involve angles expressed in radians. To convert degrees into radians, we multiply by \(\pi/180 \) or \(355/(113 \times 180) \). Conversely, to convert radians into degrees, we multiply by \(180/\pi \) or \(180 \times 113/355 \).

Sine

\[
\sin a = \left(\frac{a^2}{20} + 1 \right)^{-1} \times 10^{-7} \left(a - \frac{a^3}{3} \right) \quad 0 < a < \frac{\pi}{4}
\]

Accuracy

<table>
<thead>
<tr>
<th>a in Degrees</th>
<th>Error in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 30°</td>
<td>< 0.001%</td>
</tr>
<tr>
<td>30 to 45°</td>
<td>< 0.006%</td>
</tr>
</tbody>
</table>
= \cos \left(\frac{\pi}{2} - a \right)

\frac{\pi}{4} < a < \frac{\pi}{2}

Accuracy

<table>
<thead>
<tr>
<th>Degrees</th>
<th>Error in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 to 70°</td>
<td>< 0.001%</td>
</tr>
<tr>
<td>70 to 90°</td>
<td>< 0.0001%</td>
</tr>
</tbody>
</table>

For greater accuracy

\sin a = \left\{ \left[\left(\frac{a^2}{42} + 1 \right)^{-1} \times 21 - 11 \right] \frac{a^2}{-60} + 1 \right\} a

Cosine

\cos a = \left[\left(\frac{a^2}{30} + 1 \right)^{-1} \times 5 - 3 \right] \frac{a^2}{-4} + 1

0 < a < \frac{\pi}{4}

Accuracy

<table>
<thead>
<tr>
<th>Degrees</th>
<th>Error in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 20°</td>
<td>< 0.0001%</td>
</tr>
<tr>
<td>20 to 45°</td>
<td>< 0.001%</td>
</tr>
</tbody>
</table>

\sin \left(\frac{\pi}{2} - a \right)

\frac{\pi}{4} < a < \frac{\pi}{2}

Accuracy

<table>
<thead>
<tr>
<th>Degrees</th>
<th>Error in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 to 60°</td>
<td>< 0.006%</td>
</tr>
<tr>
<td>60 to 90°</td>
<td>< 0.001%</td>
</tr>
</tbody>
</table>

For greater accuracy

\cos a = \left\{ \left[\left(\frac{a^2}{56} + 1 \right)^{-1} \times 28 - 13 \right] \frac{a^2}{360} - .5 \right\} a^2 + 1

Tangent

\tan a = \left\{ \left(\frac{a^2}{a^2 + 1} \right)^{-1} \times 5 + 1 \right\} \frac{a}{6}

0 < a < \frac{\pi}{4}

Accuracy

<table>
<thead>
<tr>
<th>Degrees</th>
<th>Error in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 20°</td>
<td>< 0.001%</td>
</tr>
<tr>
<td>20 to 35°</td>
<td>< 0.01%</td>
</tr>
<tr>
<td>35 to 45°</td>
<td>< 0.03%</td>
</tr>
</tbody>
</table>

\tan \left(\frac{\pi}{2} - a \right)

\frac{\pi}{4} < a < \frac{\pi}{2}

Accuracy

<table>
<thead>
<tr>
<th>Degrees</th>
<th>Error in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 to 55°</td>
<td>< 0.03%</td>
</tr>
<tr>
<td>55 to 70°</td>
<td>< 0.01%</td>
</tr>
<tr>
<td>70 to 90°</td>
<td>< 0.001%</td>
</tr>
</tbody>
</table>

For greater accuracy

\tan a = \left\{ \left[\left(\frac{17}{42} a^2 + 1 \right)^{-1} \times 84 + 1 \right] \frac{a^2}{255} + 1 \right\} a

For example to calculate \sin 30°, we first convert to radians by multiplying by \pi/180 or 355/(113 \times 180)
Enter Press Display Remarks
30 × 30.
355 + 10650
113 + 94.247787
180 ÷ 0.5235988 a in radians
20 ÷ 0.2741557
1 × 0.9864776
10 − 9.864776
7 × 2.864776
.5235988 ÷ 1.4999932 Re-enter a in radians
3 = 0.4999977

Note that this answer is correct rounded off to five significant figures.

Inverse Trigonometric Functions

Arc Sine

\[\text{arc } \sin a = \left[\left(-\frac{9}{20} a^2 + 1 \right)^{-1} \times 10 + 17 \right] \frac{a}{27} \quad 0 < a < \frac{1}{2} \]

Accuracy
a Error in %
0 to 0.2 < 0.0001%
0.2 to 0.3 < 0.001%
0.3 to 0.45 < 0.01%
0.45 to 0.5 < 0.03%

\[= -4 \text{arc } \sin b + \pi \quad \frac{1}{2} < a < 1 \]

where \(b = \sqrt{\frac{1 - a}{2}} \)

Accuracy
a Error in %
0.5 to 0.65 < 0.05%
0.65 to 0.75 < 0.01%
0.75 to 0.9 < 0.001%
0.9 to 1.0 < 0.0001%

For greater accuracy,

\[\text{arc } \sin a = \left[\left(-\frac{25}{42} a^2 + 1 \right)^{-1} \times 189 + 61 \right] \frac{a^2}{1500} + 1 \]

Arc Cosine

\[\text{arc } \cos a = \frac{\pi}{2} - \text{arc } \sin a \quad 0 < a < 1 \]

Accuracy
Same as for \(\text{arc } \sin \)

Arc Tangent

\[\text{arc } \tan a = \left[\left(\frac{3a^2}{5} + 1 \right)^{-1} \times 5 + 4 \right] \frac{a}{9} \quad 0 < a < 0.5 \]

Accuracy
\[a \quad \text{Error in } \% \]
0 to 0.2 < 0.0001%
0.2 to 0.3 < 0.001%
0.3 to 0.45 < 0.01%
0.45 to 0.5 < 0.02%

\[= \text{arc } \tan b + 0.4636476 \]

where \(b = \left[\left(\frac{2}{a} + 1 \right)^{-1} \times 5 - 1 \right] / 2 \quad 0.5 < a < 1 \)

Accuracy
\[a \quad \text{Error in } \% \]
0.5 to 0.85 < 0.0001%
0.85 to 1 < 0.001%

\[= -2 \text{arc } \tan \left(\frac{1}{a} \right) + \pi \quad a > 1 \]

Accuracy
Same as above for \(\frac{1}{a} \)

For greater accuracy,

\[\text{arc } \tan a = \left[\left(\frac{5a^2}{7} + 1 \right)^{-1} \times 21 + 4 \right] \frac{a^2}{-75} + 1 \]

28

29
To calculate arc tan 0.75,

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Enter} & \text{Press} & \text{Display} & \text{Remarks} \\
\hline
2 & + & 2. & \\
.75 & + & 2.666666 & \\
1 & \times \times & 0.2727272 & \\
5 & - & 1.363636 & \\
1 & + & 0.363636 & \\
2 & \equiv & 0.181818 & \text{b} \\
.6 & + & 0.0198346 & \\
1 & \times \times & 0.9805511 & \\
5 & + & 4.9027555 & \\
4 & \times & 8.9027555 & \\
.181818 & + & 1.6186811 & \text{Re-enter b} \\
9 & + & 0.1798534 & \\
.4636476 & \equiv \times & 0.643501 & \text{a in radians} \\
180 & \times & 115.83018 & \\
113 & + & 13088.81 & \\
355 & \equiv & 36.869887 & \\
\hline
\end{array}
\]

This answer is correct to 6 places; the last two digits should be 97 instead of 87.

Logarithmic and Exponential Functions

The value of \(\log a \) can be determined to within \(\pm 0.04\% \) using the \(\equiv \) key. If you repeatedly take the square root of any number, the value will approach unity with a remainder that is proportional to the logarithm of the original number. Because of the eight-digit accuracy of the EC-425, the optimum number of times to take the square root is 11.

For \(4 \leq a \leq 40 \),

\[
\log a = 889 \left(\sqrt[11]{a} - 1\right)
\]

The 2048th root of \(a \) is obtained by taking the square root 11 times, since \(2^{11} = 2048 \).

For example, to determine the common logarithm of 12,

\[
\begin{array}{|c|c|c|}
\hline
\text{Enter} & \text{Press} & \text{Display} \\
\hline
12 & \equiv & 1.001214 \\
1 & \times & 1.001214 \\
889 & \equiv & 1.079246 \\
\hline
\end{array}
\]

This answer is within \(\pm 0.006\% \) of the correct value of 1.079181.

This method can easily be extended to values of \(a \) outside the range of 4 to 40. For example, \(\log 12,000 = \log 12 + \log 10^3 = 1.079246 + 3 = 4.079246 \).

This method is also applicable for natural logarithms, since

\[
\ln a = \ln 10 \times \log a = 2.3025851 \times 889 \left(2048 \sqrt[11]{a} - 1\right)
\]

\[
= 2047 \left(2048 \sqrt[11]{a} - 1\right)
\]

Again, for \(4 \leq a \leq 40 \), the accuracy is \(\pm 0.04\% \).

For example, to determine \(\ln 12 \)

\[
\begin{array}{|c|c|c|}
\hline
\text{Enter} & \text{Press} & \text{Display} \\
\hline
12 & \equiv \text{(11 times)} & 1.001214 \\
1 & \times & 1.001214 \\
2047 & \equiv & 2.485058 \\
\hline
\end{array}
\]

This answer is within \(\pm 0.006\% \) of the correct value of 2.484907.
Again, this method can be extended to values of a outside the range of 4 to 40. For example, to find $\ln 12,000$, calculate $\log 12,000$ as shown on preceding page and multiply by $\ln 10$ (2.3025851 or 2047/889). This yields 9.3928194, which is within $+0.002\%$ of the correct value of 9.3926619.

Exponential Functions

The value of y^a can be calculated to within 0.05% using the \Re and \times keys. For $1 \leq y \leq 10$ and $0.1 \leq a \leq 1$, the method involves taking the square root of y eleven times, subtracting unity, multiplying by a, adding unity, and then squaring eleven times.

Example: $5.1^{0.49}$

<table>
<thead>
<tr>
<th>Enter</th>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>\Re (11 times)</td>
<td>1.0007957</td>
</tr>
<tr>
<td></td>
<td>\Re</td>
<td>1.0007957</td>
</tr>
<tr>
<td>1</td>
<td>\times</td>
<td>0.0007957</td>
</tr>
<tr>
<td>.49</td>
<td>$+$</td>
<td>0.0003898</td>
</tr>
<tr>
<td>1</td>
<td>\Re (11 times)</td>
<td>2.2212695</td>
</tr>
</tbody>
</table>

This value is within 0.025% of the correct value of 2.2218226.

This method can easily be extended to values of y and a outside these ranges.

Example:

$5100^{2.49} = (5.1 \times 10^3)^{2.49}$

$= 5.1^2 \times 5.1^{0.49} \times 100^{0.47} \times 10^7$

$= 26.01 \times 2.2212695 \times 2.9510491 \times 10^7$

$= 1.704975 \times 10^9$

Calculating $5.1^{0.49}$ and $100^{0.47}$, squaring 5.1 and multiplying these three terms and 10^7 together yields 1.704975×10^9 which is within 0.03% of the correct value of 1.7054922 $\times 10^9$.

This method can obviously be used to determine the value of e^a. For $0.1 \leq a \leq 1$, the value of e^a can be determined to within -0.03%. The 2048th root of e to 8 places is 1.0004884 (the EC-425 will compute this as 1.0004883) and the remainder is 0.0004884. This value can be entered easier than entering the value of e, taking the square root 11 times, and subtracting unity for each calculation.

For example, to calculate $e^{0.4}$,

<table>
<thead>
<tr>
<th>Enter</th>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>.0004884</td>
<td>\times</td>
<td>0.0004884</td>
</tr>
<tr>
<td>.4</td>
<td>$+$</td>
<td>0.0001953</td>
</tr>
<tr>
<td>1</td>
<td>\Re (11 times)</td>
<td>1.4916042</td>
</tr>
</tbody>
</table>

This value is within -0.02% of the correct value of 1.4918247.

For greater accuracy,

$$e^a = \left\{\left[\left(\frac{a^2}{60} + 1\right)^{-1} \times (-5) + 6\right]/a - 0.5\right\}^{-1} + 1 \quad 0 < a < 1$$

Calculating $e^{0.4}$ by this expression results in an answer of 1.4912846, compared to the correct value of 1.4918247. For values of a between 0 and 0.6, this method yields answers within ± 1 in the eighth place. For values of a approaching unity, you can use the expression $e^a = (e^a)2$.

For values of a greater than unity, use either of these methods to calculate the fractional part of a and multiply by e raised to the integer part of a. For example, $e^{2.7} = e^2 \times e^{0.7}$. An approximation for $e \approx 193/71 \approx 2.7183098$. The error in this approximation is less than 0.001% or 1 part in 100,000.
SAMPLE PROBLEMS

Geometry

Area of a Triangle — Find the area of a triangle with a base of 4 inches and a height of 3 inches.

\[A = \frac{1}{2} b h \]

\[= \frac{1}{2} \times 4 \times 3 \]

= 6 sq in

Enter	Press	Display
0.5 | \(\times\) | 0.5
4 | \(\times\) | 2.0
3 | \(=\) | 6.0

Circle — For a circle with a 3.85 inch radius, find the circumference and the area of a sector subtended by 35°.

A good approximation for \(\pi\) is 355/113.

Circumference, \(C = 2 \pi R\)

\[= 2 \times \frac{355}{113} \times 3.85 \]

\[= 24.190265 \]

Enter	Press	Display
2 | \(\times\) | 2.0
355 | \(\div\) | 210.0
113 | \(\times\) | 6.2831858
3.85 | \(=\) | 24.190265

Area of Sector, \(A_s = \frac{1}{2} r^2 \theta\)

where \(\theta = \frac{\text{degrees}}{180} \times \pi\)

\[= \frac{1}{2} \times (3.85)^2 \times \frac{35}{180} \times \frac{355}{113} \]

\[= 4.527275 \]

Enter	Press	Display
3.85 | \(\times^2\) | 14.8225
2 | \(\times\) | 7.41125
35 | \(\div\) | 259.39375
180 | \(\times\) | 1.4410763
355 | \(\div\) | 511.58208
113 | \(=\) | 4.527275

Sphere — Find the volume of a sphere with a radius of 3.7 inches.

\[V = \frac{4}{3} \pi r^3 \]

\[= \frac{4}{3} \times \frac{355}{113} \times (3.7)^3 \]

\[= 212.1748 \text{ cu in} \]

Enter	Press	Display
3.7 | \(\times^3\) | 13.69
3.7 | \(\div\) | 50.653
355 | \(\div\) | 17981.815
113 | \(\times\) | 159.1311
4 | \(\div\) | 636.5244
3 | \(=\) | 212.1748

Physics

Thrown Object — If a ball is thrown upward with a velocity of 86 feet per second, what is its velocity at the end of 1.75 seconds? What will be its height above the starting point at the end of 3.25 seconds? Use \(g = 32.2\) feet per sec\(^2\).
Velocity, \[v = v_0 - gt \]

\[= 86 - (32.2) (1.75) \]

\[= 29.65 \text{ ft/sec} \]

Enter	Press	Display
32.2 | × | 32.2
1.75 | + | \(-56.35\)
86 | = | \(29.65\)

Height, \[s = v_0 t - \frac{1}{2} gt^2 \]

\[= (86)(3.25) - \frac{1}{2} (32.2)(3.25)^2 \]

\[= 3.25 \left[86 - \frac{1}{2} (32.2)(3.25) \right] \]

\[= 109.44375 \text{ ft} \]

Enter	Press	Display
2 | × | 0.5
32.2 | × | 16.1
3.25 | = | 52.325
86 | + | \(-52.325\)
3.25 | = | 109.44375

Time, \[s = v_0 t + \frac{1}{2} gt^2 \]

\[\therefore t = \sqrt{\frac{2s}{g}} \]

since \(v_0\), initial velocity, is equal to zero

\[t = \sqrt{\frac{2 \times 1175}{32.2}} \]

\[= 8.5429132 \text{ sec} \]

Enter	Press	Display
2 | × | 2.
1175 | + | 2350.
32.2 | = | \(8.5429132\)

Velocity, \[v = v_0 + gt \]

\[= 0 + (32.2 \times 8.54) \]

\[= 274.988 \text{ ft per sec} \]

Enter	Press	Display
32.2 | × | 32.2
8.54 | = | 274.988

Solar Heat Equivalence – How many tons of coal would be required to produce an amount of heat equivalent to solar energy falling on one square mile of earth in the vicinity of the equator? Solar energy falls at 7 BTU per square foot per minute on a clear day, and the heat of combustion of coal is 12,000 BTU per pound.

Weight of coal, in tons per sec = \(\frac{\text{total solar heating per sec}}{\text{heating of coal per ton}}\)

\[W = \frac{\text{area in sq ft} \times \text{rate}}{2000 \times \text{heating of coal per lb}} \]

\[= \frac{(5280)^2 \times 7}{2000 \times 12000} \]

\[= 8.1312 \text{ tons per minute} \]
Gas Pressure — The internal pressure of a tank of gas is 1300 psi at room temperature. What is the internal pressure if the temperature rises by 25°C (from 298°K to 323°K)?

\[
P_2 = \frac{P_1 T_2}{T_1}
= \frac{1300 \times 323}{298}
= 1409.0604 \text{ psi}
\]

Density of Gas — What is the density of helium gas in a tank at a pressure of 125 atm at room temperature, 298°K? The universal gas constant is 8317 nt m/kg°K, the atomic mass of helium is 4.004, and 1 atm = 1.013 X 10^5 nt/m².

\[
P = 125 \text{ atm} \\
M = 4.004 \\
R = 8317 \text{ nt m/kg°K} \\
T = 298°K
\]

\[
\rho = \frac{PM}{RT}
= \frac{125 \times 1.013 \times 10^5 \times 4.004}{8317 \times 298}
= 20.456463 \text{ kg per m}^2
\]

Electrical Engineering

Mechanical Work to Charge a Capacitor — How much mechanical work must be done to charge a 750 μF capacitor to a potential difference of 675 volts, assuming an efficiency of 68 percent in the process?

Stored energy, \[E = \frac{1}{2} CV^2 \]

\[= \frac{1}{2} \times 750 \times 10^{-6} \times (675)^2 \]

\[= 1.7085937 \times 10^2 \text{ joules or watt-sec} \]

Work required = \[\frac{\text{Stored energy}}{\text{Efficiency}} \times 0.738 \text{ ft-lbs/joule} \]

\[= \frac{170.859}{0.68} \times 0.738 = 1.8543226 \times 10^2 \text{ ft-lbs} \]
Parallel Plate Capacitor — What is the equivalent capacitance of a 12-plate parallel plate tuning capacitor if the area of each side of a plate is 15 square cm and the plates are separated by 0.2 mm?

\[C = \frac{(n - 1) A}{36 \pi \times 10^9 \times d} \]

\[= \frac{(12 - 1)(15 \times 10^{-4})}{36 \times 10^9 \times \frac{355}{113} \times (0.2 \times 10^{-3})} \]

\[= 7.2946011 \times 10^{-10} \]

\[= 729.46011 \text{ pF} \]

Voltage, Power, Resistance — What voltage is required to operate the bulb at 75 W if the bulb resistance is 161 \, \Omega?

\[V = \sqrt{PR} = \sqrt{75 \times 161} = 109.8863 \text{ volts} \]

Mechanical Engineering

Acceleration, Speed — What is the acceleration in ft/sec² of an automobile when its speed changes from 75 mph to 45 mph in 4 seconds?

\[a = \frac{V_f - V_o}{t} \]

\[= \frac{45 \text{ mph} - 75 \text{ mph}}{4 \text{ sec}} \times \frac{5280 \text{ ft/mile}}{3600 \text{ sec/hr}} \]

\[= -11 \text{ ft/sec}^2 \]

Heat Generated by a Light Bulb — How much heat is generated per minute by a 75 watt incandescent light bulb? One watt = 3.413 BTU per hour.

\[P = 75 \text{ watts} \times 3.413 \text{ BTU/hr} \div 60 \text{ min/hr} = 4.26625 \text{ BTU/min} \]

Horsepower — If the mass of the car in the previous example is 110 slugs, what hp was exerted by the brakes in decelerating the car? Use 1 ft-lb/sec = 1/550 hp.
\[P = F \cdot v, \text{ but } F = ma \text{ and } v = at \]

\[\therefore P = (ma) \cdot (at) \text{ ft-lb/sec} \]

\[P = \frac{1}{550} \text{ ma}^2 \text{t hp} \]

\[= \frac{1}{550} \times 115 \times (-11)^2 \times (4) \]

\[= 101.2 \text{ hp} \]

Transmitting Torque — What is the transmitting torque of a 165-hp engine operating at 1800 rpm?

\[T = \frac{63000 \text{ hp}}{N} \]

\[= \frac{63000 \times 165}{1800} \]

\[= 5.775 \times 10^3 \text{ in-lb} \]

Civil Engineering

Surveying — Determine the temperature correction and the approximate slope correction for a steel tape used at a temperature of 85°F. The tape standardized temperature is 70°F, the measured length is 12,750 feet, and the difference in elevation is 13 feet.

Temperature correction, \(C_t = 0.0000065 \cdot S \cdot (T - T_o) \)

\[= 0.0000065 \times 12750 \times (85 - 70) \]

\[= 1.243125 \]

Rod Deflection — What is the deflection of the end of a metal rod due to a force of 20,000 lb? The length of the rod is 2.5 feet and the cross sectional area is 0.385 square feet. \(E \), the elastic modulus, is \(30 \times 10^6 \) psi.
Slope Correction,
\[C_h = \frac{h^2}{2S} \]

\[= \frac{1}{2 \times 12750} (13)^2 \]

\[= 6.6274509 \times 10^{-3} \]

Enter	**Press**	**Display**
13 | EE x² + | 1.69 02
2 | + | 8.45 01
12750 | = | 6.6274509 -03

Structural Analysis — Determine the compressive stress in the extreme fibre of concrete in a rectangular concrete beam with only tensile reinforcing subjected to a bending moment of 28,500 lb-in. The width of the beam is 2.5 feet and the effective depth is 8.5 inches. Use the approximate design values of 7/8 and 1/3 for j and k respectively.

\[f_c = \frac{2M}{j k bd^2} \]

\[= \frac{2 \times 28500}{.875 \times .333 \times 2.5 \times 12 \times (8.5)^2} \]

\[= 90.253378 \text{ psi} \]

Enter	**Press**	**Display**
8.5 | x² x | 72.25
.875 | x | 63.21875
.333 | x | 21.051843
2.5 | x | 52.629607
12 | EE x² x | 1.5833926 -03
2 | x | 3.1667852 -03
28500 | = | 9.0253378 01
In Case of Difficulty

1. Check to be sure calculator is correctly plugged into a proper outlet that has power and that the AC adapter charger voltage switch is set on the correct voltage.

2. Check to be sure ON-OFF switch is in the ON position. Presence of digits in the display indicates power is on.

3. If display fails to light on battery operation, recharge batteries.

4. Review operating instructions to be certain calculations are performed correctly.

If none of these corrects the difficulty, return the unit prepaid for repair to the Service Center listed on the back cover. Please include information on your difficulty as well as return information of name, address, city, state and zip code.

CAUTION: Use of other than the AC Adapter /Charger which comes with your calculator may apply improper voltage to the calculator and will cause damage.