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INTRODUCTION

YOUR NEW VERSALOG Il SUDE RULE

The original VERSALOG slide rule was designed by engineers,
for engineers. Not merely an instrument for general computation,
the VERSALOG was designed around the problems of engineering.
It has successfully provided both the practicing engineer and the
student with a highly efficient and practical slide rule to match
the high tempo of modern engineering development. In keeping
pace with the rapid advancement of engineering sophistication,
this fine rule has been further improved to provide even greater
efficiency and convenience. The VERSALOG Il improvements in-
clude the following:

@® The addition of an A scale which, combined with the R, and R,
scales, facilitates the computation of many combined operations
involving squares and square roots.

@ The extension of the R, scale to reduce the re-setting of indices.

® The addition of symbols at the left of each scale to provide
immediate, simple identification of the use of the scale.

@ The designation of the related range of the trigonometric func-
tions at the right of each trigonometric scale.

@ The addition of radian identification on a trigonometric scale
allowing direct conversion of radians to degrees and degrees
to radians.

® The rearrangement of scales to provide greater efficiency in
overall slide rule operations.

@ Improved functional positioning of all numerals on the three
trigonometric scales for better legibility, thereby reducing
reading errors.

INSTRUCTION TEXT

The original VERSALOG instruction manual has been care-
fully edited and rewritten to parallel the improvements in the
VERSALOG II slide rule. Continuing in the spirit of the original
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manual of breaking with conventional "instruction pamphlets,” the
author has placed a renewed emphasis on the efficient use of the
slide rule scales. The value of this approach will be appreciated by
students, teachers, and practicing engineers who have experienced
difficulty in the transition between the abstract mathematical
approach of contemporary slide rules and “instructions”. .. and the
practical application of those mathematical principles to every day
engineering problems.

The author retained from the original text the now highly proven
successful practical application sections on the three basic fields
of engineering. Revisions were made only wherever necessary to
up-date the subject matter to embrace present day engineering
developments.

These sections (Chapters 8, 9, and 10) make a long step forward
toward the complete use of the slide rule and all its scales by
graphically illustrating the application of your VERSALOG 1II to
three separate and distinct engineering fields. Each section pre-
sents a practical and easy-to-comprehend guide to the use of the
VERSALOG II in these specialized activities. By so doing, emi-
nently qualified authorities in the fields of Civil, Electrical, and
Mechanical Engineering have solved one of the great problems of
slide rule technique and use.

CONSTRUCTION

While many features are sought for in a slide rule, one is foremost
above all others —unquestioned accuracy at all times, no matter
what the conditions. The owner and user of a new VERSALOG II
slide rule will have extra confidence in knowing that the ultimate
in craftsmanship, care and exactness in manufacture has been
followed to produce the very finest, most accurate slide rule avail-
able today.

To insure accuracy, your VERSALOG II slide rule is constructed
from carefully selected and laminated bamboo. Bamboo is tough,
and was chosen because of its ability to resist contraction and
expansion under varying climatic conditions. Bamboo has natural
oils, imperceptible to the touch, constantly lubricating the bearing
surfaces and allowing a smoothness of action not found in any other
wood or metal. It operates more easily over the years, due to this
self-lubricating characteristic. White plastic faces are used for
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easy reading, and all scale graduations and figures are deeply cut
into the face to insure a lifetime of accurate calculations.

In your POST VERSALOG 11 slide rule you have truly one of the
finest and most exact instruments this century’s ingenuity is able
to produce.

Our deepest gratitude is extended to George John Zanotti for his
untiring efforts throughout the writing and editing of this text
book of instructions. A special thanks is due again to the original
designers of the Versalog and many of its unique features to
Professor E. I. Fiesenheiser, Professor R. A. Budenholzer, and
Associate Professor B. A. Fisher for their specialized chapters on
applied engineering.

It is a tribute to the engineering profession, and to the never ending
efforts of such men who are devoting their lives educating and train-
ing the engineer of the future.

‘P TELEDYNE POST



PREFACE

This instructional manual is intended to be used as an accom-
panying text or reference book for the Post VERSALOG 1l slide
rule. Its main purpose is to provide essential instructions in the use
of the slide rule as clearly and completely as possible in a straight-
forward language and with ample examples and illustrations.

It has been written for study without the aid of a teacher. However,
a knowledge of basic elementary mathematics is assumed. The
student engineer will probably have this knowledge when he
acquires the slide rule. Although the manual contains many ex-
amples of mathematical problems as well as engineering problems,
no effort is made to teach either mathematics or engineering in
this book.

The material divides rather naturally into three parts.

1. Chapter 1 provides the necessary description and scale famil-
jarization. In addition, three decimal locating methods are in-
troduced early in the text providing the background for subse-
quent subject matter.

2. Chapters 2-5 deal with direct slide rule instruction and manipu-
lation. Every one of the twenty-four scales is amply described,
and detailed instruction in their efficient use is fully covered
with over one hundred examples. Sections on the extended use
of each of these scales has been included in,each chapter. The
user will find these techniques extremely useful in future slide
rule applications.

3. Chapters 6-10 present the methods of directly applying the slide
rule for the solution of practical problems. Specifically, these
chapters deal with slide rule methods for the solution of mathe-
matical, business, civil engineering, mechanical engineering,
and electrical engineering applications.

Although the book can be utilized in a variety of situations, it will
serve best as a continuing reference for the most efficient use of the
slide rule. The user should practice to develop mastery of all the
scales and their most efficient uses. Persistent usage and continued
investigation of the versatile scale arrangements will yield many
dividends over the years.

vi

It is almost impossible to give proper credit to everyone who helped
in one way or another to make this bock possible. For the technical
review of the manuscript and their many helpful suggestions, my
appreciation is particularly due to Frank Heurich, Post Slide Rule
Consultant and members of the Post marketing staff. Assistance
from Prof. Miiton D. Eulenberg and Prof. Theodore S. Sunko of
Chicago City College, especially in the Applications to Mathematics
chapter, is also acknowledged. I am very grateful to Judy Vee, my
secretary, for her untiring and patient efforts to transcribe my
innumerable difficult notes.

To Terry, my loving and ever-devoted wife, I owe the most, for her
continued loving faith and confidence of my efforts to complete thiz
work. Without her none of this would have been possible.

oy ! howallS

GEORGE JOHN ZANOTTI

Cuicacgo, ILLINOIS
July 1970
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ADJUSTMENT AND CARE OF THE VERSALOG II-SLIDE RULE

ADJUSTMENT
Your VERSALOG II slide rule should come to you in perfect
adjustment. However, in case it is dropped or severly jarred, the
precise adjustment may be lost. In any case, it is advisable to check
the adjustments occasionally to make sure that the scale readings
are as accurate as the instrument will allow.

In order to check and adjust the slide rule, the following pro-
cedure may be followed. With the rule held so that the shorter body
member is uppermost, move the slide until the C and D scales
coincide perfectly. The DF scale on the upper body should now be
in alignment with the identical CF scale of the slide. If it is not,
the upper body member must be moved to the right or left. In order
to adjust this member, loosen the two screws in the metal end bars
about one-half turn and move the upper body member as required,
then tighten the screws.

The hairline should now be moved to coincide with the left index
(the 1 mark) of the D scale. In this position, the hairline should
also coincide with the symbol = of the DF scale. If it does not, the
hairline is not perpendicular to the slide rule scales. It may be
adjusted by loosening the four screws of the metal frame which
surrounds the glass. The glass may then be moved until perfect
alignment is obtained, after which the screws should be carefully
retightened.

The hairline on the reverse side should be in perfect alignment with
the left index of the D scale, as well as with the 1/e mark of the
LL/3 upper scale. If it is not, this hairline must be moved. This is
again done by adjusting the glass and retightening the screws.
When properly set, both hairlines should align simultaneously. In
making this adjustment, care must be exercised not to disturb the
position of the hairline previously adjusted.

If it is difficult to push the slide, the body parts may be gripping
it too tightly. T'o adjust for easy operation, loosen a screw at one
end only of the adjustable part of the body. This end may then be
pulled away from the glide. The screw may then be retightened,
and the operation repeated at the other end. By adjusting one end
at a time, the alignment of the scales is not affected.




CARE

It is important to keep the slide rule as clean as possible. Keeping
the hands clean and keeping the rule in its case when not in use
will help. To clean the scales, a slightly moist cloth may be used.
To remove particles from under the glass, a narrow strip of paper
may be placed over the scales. The glass may then be run over the
paper to pick up the dirt particles.

With proper adjustment and care, your VERSALOG II slide rule
will provide a lifetime of accurate service. The property of the
bamboo construction is that the operation of the slide becomes
eagier and smoother with age and usage,

MANIPULATION

In setting the hairline, the cursor is generally pushed with one
hand to the area of the desired setting. It may then be set accu-
rately by placing the thumbs of both hands against either side of
the cursor frame, pushing a little more with one thumb than the
other to set the hairline.

In setting the slide, it may be moved to the area of the desired
setting with one hand. Usually one end of the slide projects beyond
the body of the rule. Should the right end project, the right hand
is then used to make the exact setting. The thumb and forefinger
of the hand grasp the slide and at the same time press against the
end of the body of the rule. By this control an exact setting of the
slide may be made very quickly, the forefinger and thumb doing the
precise work. In case the left end of the slide projects, the left hand
is used in the same manner to make the setting.

POCKET VERSALOG Il

The VERSALOG 1II is available in two sizes: the standard, full
size VERSALOG II, and the handy pocket version, a precise
miniature of the full size VERSALOG II. Since the scales on the
POCKET VERSALOG II are half as long as the scales on the full
gize VERSALOG II (4.92” rather than 9.84"), space limitations
permit only half the number of graduations. The illustrations and
references to the scale length throughout the manual are based on
the full size VERSALOG II, which should be kept in mind when
using the manual. When using the slide rule, however, every opera-
tion, simple or complex, is identical whether you are using the full
size VERSALOG II or the POCKET VERSALOG 1II.

xiii
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THE SCALES OF THE SLIDE RULE

1.1 GENERAL DESCRIPTION OF THE SLIDE RULE

The slide rule consists essentially of three parts as illustrated in
Figure 1.2. The part fixed between the end plates is called the body,
the long movable portion is called the slide, and the glass runner
the indicator. The fine vertical line on the indicator is called
the hairline.
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Figure 1.2—Parts of Slide Rule.

The Post Versalog Il slide rule has 24 scales, located and arranged
in a convenient and logical manner; see Figure 1.1. These scales
will permit the solution of any kind of arithmetical problem except
adding and subtracting. Each scale is designated on the rule by a
letter or a combination of letters and symbols which appear at the
left end of the scale. Only one of these, the L scale, is a uniformiy
divided scale, that is, the spaces between graduations are the same
throughout the scale. All the other scales are non-uniform, that is,
the distance between consecutive markings does not remain the
same on all parts of the scale. The reason for this will become
apparent as the construction and use of the various scales is
developed in subsequent chapters.

THE VERSALOG Il SLIDE RULE

In order to appreciate the scope of computations which are possible
with the Versalog II slide rule, it is useful, at the onset, to consider
a brief overview of the various scales. Each of the listed scales will,
of course, be discussed in appropriate detail in the balance of this
book.
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2 SCALE DESCRIPTIONS
1.2 DESCRIPTION OF THE SCALES

C and D Scales
Probably the scales most often used are those marked C and D.
For convenience, they appear on both sides of the rule. They are
identical in markings and length, the D scale appearing on the
body of the rule, and the C scale on the movable slide. The scale
length is 25 cm. or 9.84 in. although the instrument is commonly
called a 10 inch slide rule. The C and D scales are used for multipli-
cation and division and in conjunction with all of the other scales
on the rule. These scales are discussed in Chapter 2 and in sub-
sequent chapters.

Cl Scale

The CI, or C inverted, scale is exactly the same as the C or D scales,
except that it is graduated from right to left. Numbers appearing
on the CI scale are reciprocals of numbers appearing directly oppo-
site on the C scale. Chapter 2 includes a discussion of the use of the
CI scale for rapid and efficient multiplication and division, and for
the solution of certain problems in repeated division, continued
multiplication, and combined operations.

CF, DF, and CIF Scales

These are the so-called folded scales. The DF scale located on the
body of the rule is of the same construction and length as the D
scale, but begins and ends at #. This places the 1 mark very near
the midpoint of the scale. The CF scale is identical to the DF scale,
but is located on the slide. The CIF scale is merely an inverted CF
scale, that is, the numbers on the CIF scale are reciprocals of those
directly opposite on CF. The folded scales, discussed in Chapter 2,
are designed to eliminate certain unnecessary moves which are
often required when using the C, D, and CI scales alone.

A, R,, and R; Scales
These scales are used for finding squares and square roots and for
combined operations which include squares and square roots. When
the hairline is set on any number on the D scale, its square appears
under the hairline on the A scale, and its square root appears
under the hairline on either the R, and R, scales. The A and R
scales are discussed in Chapter 3.

K Scale
The K scale is used for obtaining cubes and cube roots. The readings
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on the K scale represent the cubes of the corresponding readings on
the D scale, and, conversely, readings on the D scale represent cube
roots of the corresponding readings on the K scale. The K scale is
discussed in Chapter 3.

L Seale
The L scale is used to obtain common logarithms, that is, logarithms
to the base 10. When the hairline is set to any number on the D
scale, the mantissa of the common logarithm is read under the
hairline on the L scale. Applications of the L scale are discussed in
Chapter 4.

LL Scales
The LLO, LL1, LL2, and LL3 scales, called the log log scales, are
used to find powers and roots of numbers from 1.001 to 22,000.
Fractional and decimal powers are easily handled with these scales.
Powers of e (the base of natural logarithms) are also obtained
directly on the LL scales by setting the hairline to the power desired
on the D scale.

The scales LL/0, LL/1, LL/2, and LL/3 are reciprocal log log scales
and are used in the same manner as are the LL scales, but for
numbers less than 1. Their range extends from 0.00005 to 0.999
and the numbers and graduations extend from right to left. When
the hairline is set to a number on the D scale, the reciprocal of e
raised to the power of this number is read directly on a reciprocal
log log scale.

The log log scales are one-quarter lengths of a single long scale.
Thus the LL1 scale begins where the LLO scale ends, the LL2 scale
begins where the LL1 scale ends, and so on. If these four scales, or
their reciprocal scales, could be placed end to end, a single con-
tinuous scale one meter in length would result.

An important property of the log log scales is that they represent
powers designated as ¢* whereas the reciprocal log log scales repre-
sent the reciprocals 1/e*, which are the same as e *. Hence any
number on an LL scale has its reciprocal directly opposite on the
corresponding reciprocal log log scale. Many of the other advantages
and uses of the log log scales will be explained in Chapter 4.

Cos 5
The Cos S scale is used to obtain sine and cosine functions of angles
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and is graduated in degrees and decimals of degrees. With the
hairline set at the angle on the S scale, the sine of the angle is read
on the C scale. For sines, the scale is graduated from left to right
from 5.74 degrees to 90 degrees and the numerals are black. To
obtain the cosine of an angle, the hairline is set at the angle on the
Cos scale and its cosine function is read on the C scale. For cosines,
the scale is graduated from right to left from zero to 84.3 degrees,
and the numerals are green.

TT Scale

The T scale is used to find the tangent of angles from 5.71 degrees
to 84.3 degrees. For angles in the range of 5.71 degrees to 45 degrees,
the scale is graduated from left to right, and the numerals are black.
When the hairline is set to an angle in this range, its tangent func-
tion is read on the C scale. For angles from 45 degrees to 84.3
degrees, the scale is graduated from right to left, and the numerals
are red. When the hairline is set to an angle in this range, its
tangent function is read on the CI scale.

Sec T SRT

An additional scale marked Sec T SRT is provided for determining
the tangent function of small angles varying from 0.57 to 5.74
degrees. This scale is graduated from left to right in this range,
numbered in black, and is used with the C scale. It may also be
used for determining the sine function of small angles since the
sine and tangent functions are nearly equal for small angles. For
large angles, the scale is graduated from right to left and numbered
in red for use with the CI scale. In the range of 84.26 to 83.43 degrees,
with the hairline set to the angle on this scale, either tangents or
secants are read at the hairline on the CI scale. In this range the
tangent and the secant are nearly equal. The R (radian) scale is
read from left to right numbered in black and is used with the
C scale. Respective equivalent radian values of angles set on the
R scale can be obtained directly on the C scale. These scales are
discussed in Chapter 5.

1.3 READING THE SCALES

The construction and reading of the D scale only will be explained
here, since with this information the student will be able to read
any of the other scales. It is readily noted that the D scale has
10 primary marks which are numbered with the large numerals
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1, 2, 3,4,5,86,17, 8,9, 1. The mark corresponding to each large
numeral 1 at either end of the scale is called an index of the scale,
hence the D scale has a left index and a right index. Figure 1.3
shows the 10 primary marks and the indices.

(LEFT INDEX RIGHT INDEX—‘
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Figure 1.3— Primary Marks and Indices.

It i1s immediately apparent that the distances between successive
primary markings are non-uniform, that is, the distance between
the primary marks 1 and 2 is greater than that between 2 and 3;
the distance between the primary marks 2 and 3 is greater than that
between 3 and 4; and so on. This is because distances are propor-
tional to the logarithms of the corresponding numbers.

The scale length, from left to right index, is 25 ¢m or 9.84 in. The
scale equation then becomes x = 9.84 log |, N, where x is the distance
in inches from the left index to any number N appearing on the
scale. For example, the distance from the left index to 2 on the rule
is 9.84 log,,2 = 2.96 in. It should be noted that the scale begins with
the number 1, because in the scale equation x = 9.84 log,,N, it is
clear that x = 0 when N = 1 (log,,1 = 0). Figure 1.4 illustrates the
relation between the primary markings and the logarithmic related
distances from the left index.

= & ; il
9.84 iog 1010 9.84 in,
[t 9.84 log 5 6.8B in.~—— ]
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Figure 1.4—Logarithmic Related Distances.

Figure 1.5 shows several examples of numbers on the D scale. In
reviewing these, it should be noted that the secondary divisions
become more closely spaced when moving from left to right along
the scale. Proportionally, the accuracy of the reading diminishes.
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Figure 1.5—Numbers on the D Scale.

Between the left index and the large numeral 2, there are ten
secondary divisions which are numbered with the small numerals
1,2, 3,4,5, 6,7, 8,9. Their positions are determined by distances
proportional to the logarithms of the respective numbers 1.1, 1.2,
1.3,...1.8, 1.9, 2.0. These secondary divisions are further sub-
divided into ten parts. Each of these smallest intervals may be
taken to represent one unit. These divisions, as well as several
representative readings, are illustrated in Figure 1.6.

1000 1180 1408 1635 1843 2060

Figure 1.6 — Divisions Between 1 and 2.

It is important to recognize, at this point, that the setting corre-
sponding to a particular number on the D scale is not affected by
the position of the decimal point which is another advantage of
the logarithmic basis of the construction of the scale. Therefore the
readings shown in Figure 1.6 are merely illustrative; the setting
which corresponds to the number 1635 could also represent the
number 0.01635, 0.1635, 1.635, 16.35, and so on.
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In the range between the primary marks 2 and 4, there are again
ten unnumbered secondary divisions between the successive pri-
mary marks of 2 and 3 and also 3 and 4. Each of these in turn is
subdivided into five parts. These final intervals, therefore, may be
taken to represent two units, as illustrated in Figure 1.7.

204 235 2n 300 347 400

Figure 1.7—Divisions Between 2 and 4.

In the final section of the scale, between the primary mark 4 and
the right index, there are also ten unnumbered secondary divisions
between the successive marks of 4 and 5, 5 and 6, etc. Each of these
is further subdivided into only two parts. Therefore each of the
smallest intervals in this range represents five units. Examples of
readings within this portion of the rule are illustrated in Figure 1.8.

450 515 603 727 948

Figure 1.8—-Divisions Between 4 and 10.

In using a 10 inch slide rule, the fourth digit is ordinarily estimated
for readings between the left index and the primary mark 2, that is,
those numbers whose first significant digit is 1. All other settings
are normally limited to three digits.

An excellent procedure for checking ability to read the D scale is
to practice the pairing of readings on the D and L scales. Since the
L scale is a uniform scale, it can be read directly in much the same
way one reads a ruler or a thermometer. The following examples
illustrate the procedure.

Example 1.1 Find the D scale reading which corresponds to a
setting of 0.366 on the L scale.
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Operation

The L scale is divided into ten equal primary
divisions marked 0, .1, .2,....9, 1. It is easily veri-
fied, therefore, that each secondary division rep-
resents 0.01, and each final or tertiary division
represents (.002.

A reading of 0.366 on the L scale is found by first
moving the hairline to the primary mark .3, con-
tinuing beyond it to the sixth secondary division
(which represents .36) and continuing finally to the
third tertiary division. The corresponding reading
on the D scale, as illustrated at the hairline setting
in Figure 1.9 is 232.

0.366 on L Scale

0.782 on L Scale
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Figure 1.9—Corresponding D and L Scale Readings.

Example 1.2 What reading on the L scale corresponds to a

Operation

setting of 605 on the D scale?

The D scale setting of 605 is found by moving the
hairline to mark immediately following the primary
division 6, since each of the smallest intervals in
this range represents five units. The corresponding
reading on the L scale is 0.782. See Figure 1.9.

T [ —— e T

1

805 on D Scale

ACCURACY ¢

Exercise 1.1

Reading the D Scale

Complete the following tables by listing the readings which corre-
spond to the given settings.

0.233 | 0.480 | 0.549 | 0.850 | 0.658 | 0.911 | 0.300 | 0.088

(o B I B v I o o I o o N o o B A

1.4 ACCURACY

The graduations of the VERSALOG II are highly accurate, but the
accuracy is limited to the ability of the user to see, set, and read the
desired numbers. Settings can be made as accurate as 4 significant
digits for numbers having one as the first digit on the D scale. For
other numbers, the scales can only be read to an accuracy of three
significant digits. Since the entire scale must be used, the accuracy
as a whole is limited to three digits, or 99.9%. Such accuracy is
all that is required for ordinary design calculations since seldom
are all the elements of a computation accurate to the degree that
no one contains an error of at least one part in one thousand parts.

1.5 EFFECTS OF ERRORS IN READING THE SCALE

In case the hairline is set incorrectly or the reading is made in-
correctly, the effect may be evaluated by use of the scale equation
previously stated as x = 9.84 log,(N, in which x is the distance in
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inches from the left end of the scale to any number N appearing on
the scale. Taking the derivative of both sides with respect to N, the

. . AN dx dN .
following equation results: N~ 2.3026 (—9‘ 3 4). The term N 8 the

relative error in the number N, while g-%i is the relative error in

reading or setting the hairline. Therefore the relative error in the
number is independent of the size of the number or its location on
the scale and is 2.3026 times the relative error in reading the scale.

1.6 DECIMAL POINT LOCATION

Thus far, the topic of the location of the decimal point has been just
briefly mentioned. As has been noted before, since the slide rule has
no provision for “carrying along” the decimal point in a given
problem, some method must be adopted. Three methods are sug-
gested. In all probability, all will be used at one time or another,
depending on the complexity of the particular problem. Therefore,
all three methods should be thoroughly understoed.

THE INSPECTION AND COMMON SENSE METHOD

For many problems, the combination of factors is simple enough
that by inspection the location of the decimal point ig obvious.
80.5 ; ;
Example 1.3 350 230 (slide rule reading)
Operation By merely inspecting the numbers involved shows
the answer to slightly above “2)” so the answer
is 2.30.

Even for other problems, which may be comprised of many factors
and be more complicated mathematically, the result may also be
reasonably interpreted in this way.

Example 1.4 Find the average speed of an automobile in miles
per hour that has traveled 2050 miles in 39 hours.
Operation % ~ 525 (slide rule reading)
Common sense tells us that the answer is 52.56 MPH

and not 5.25 MPH or 525 MPH.
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THE APPROXIMATION METHOD
This method covers a greater range of problems and in all prob-
ability is the most common method in use. Essentially it requires
an estimate using rounded numbers.

Example 1.5 137.2 x 41.2 = 565 (slide rule reading)

Operation  We would round the numbers to read 100 X 40 re-
sulting in an answer equal to 4000 approximating
our original problem’s answer. Our answer can be
correctly interpreted as 5,650.

For more involved calculations, it may be more convenient to jot
down the rounded numbers and cancel.

96 X 55 X 83 x 57 . .
Example 1.6 6% 2.7 x 10,390 x 688 215 (slide rule reading)

Operation  Rewrite the original problems using rounded
numbers.

2
1ppxppx6px60 72 7.2
50 X 3 x 10,000 x 790 3500 350

Since 7.2 is divided by a number greater than 100
but less than 1,000, the result is a number less than
0.072 but greater than 0.0072. Using our slide rule
reading of 215, the resulting answer must be 0.0215.

THE SCIENTIFIC NOTATION METHOD

This is the most exact method and is recommended for problems too
complicated to be easily handled through either of the preceding
methods. It is particularly helpful when dealing with numbers of
very large or very small magnitude.

Placing a number in its scientific notation form entails placing the
decimal point after the first non-zero digit of the number and indi-
cating the true location of the decimal point by multiplying it by
the appropriate power-of-ten. The magnitude of the appropriate
power-of-ten is determined by the number of digits that the decimal
point was moved to place it after the first non-zero digit of the
number. If the number is larger than 10, the decimal point is moved
to the left, and the power-of-ten is positive. If the number is larger
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than 1, but less than 10, the decimal point is not relocated, and
the power-of-ten is therefore zero, (10° = 1). If the number is smaller
than 1, the decimal point is moved to the right, and the power-of-
ten is negative. The following examples are presented for further
clarification.

Example 1.7 Number  Scientific Notation

735 =  7.35X% 10
4,360,000 =  4.36 X 10°
0.0001354 =  1.354 x 10~*
00862 =  862x 107
71 = 7.1 % 10°

When multiplying these powers of ten, the exponents are added
algebraically, when dividing, they are subtracted algebraically.
Combining the scientific notation and approximation methods,
the location of the decimal point in more complicated problems
should present no difficulty.

To locate the decimal point when the decimal location is not obvious,
use scientific notation. When the computation is reduced to the
scientific form, the decimal point placement becomes obvious. The
slide rule reading will always yield a number larger than one
(ie. 0 to 1) or smaller than 1 (ie. 0 to .1) which is multiplied by the
appropriate power of ten.

495000
384
Operation  Rewrite the original problem using the scientific

notation method.

4.95 X 10° _ (5) X 10°
384 x 107 (4) x 102

= 1.25 X (10° x 1079
= 1,256 X 10°
== 1250

QOur answer must then be 1289.

Example 1.8 = 1289 (slide rule reading)

When applying the scientific notation method to a division problem
of two numbers as in example 1.8, there are just two possibilities
for your estimate.

If numerator > denominator, your quotient > 1; in fact, 1.0 < Q < 10.
If numerator < denominator, your quotient < 1;in fact, 0.1 < Q < 1.0.

DECIMAL POINT LOCATION 13

This is so, because you have converted your original problem
numbers to 1.0 < N < 10.

Example 1.9

Operation

26> 73,800 % DI0BAS_ 208 (slide rule reading).

0.0081 x 7,800,000

Rewrite the original problem using the scientific
notation method.

(2.6 X 101)(7.98 x 10°)(6.33 x 10~ _ (3)(B)(6)} X 10°
(8.1 x 1073)(7.8 x 10%) (8)B) x 10°

~ 18§ % (102 X 10-3)

= 2.25 x 10~
= 0225

Qur answer must then be 0.208.




CHAPTER 2

MULTIPLICATION AND DIVISION

Versalog II provides a selection of scales for optimum speed in any
multiplication or division operation or series of computations. A
familiarity of the alternates available can save time and steps in
simple everyday computations, and a thorough understanding of the
proper use of the scales is essential for efficient handling of
sequences or series of computations. The most efficient technique of
slide rule operation is emphasized.

Multiplication and division are performed on the slide rule by the
simple process of adding or subtracting logarithms. The logarithm
of the product of two numbers is equal to the sum of the logarithms
of the numbers;

logab=loga + logh.

The logarithms of the quotient of two numbers is equal to the
difference of their logarithms;

log% = log a — log b.

Since the scales used are logarithmic scales, with markings corre-
sponding to their antilogarithms, products and quotients are obtained
by merely mechanically adding or subtracting logarithmic lengths.

2.1 MULTIPLICATION USING THE LOWER SCALE COMBINATION

The D and CI Scale combination is, for the majority of cases, the
most efficient. The greater efficiency of the D and CI scales for
multiplication is mainly due to the fact that the product always
lies within the body of the rule, making it unnecessary to deter-
mine in advance the proper index to use. This is because the numbers
on the CI scale, being the reciprocals of the corresponding numbers
on the C scale, permit the conversion of the product a x b = c to the

quotient a + % = ¢. When using the CI scale, remember that it is an

inverted scale and the values increase toward the left.

15




16 MULTIPLICATION

This multiplication should start by setting the hairline to the
number (a) on the D scale (either D or the DF scale). The slide should
then be moved until the other number (b) on the corresponding
CI scale (the CI scale if the D scale is used, or the CIF scale if the
DF scale is used) coincides with the hairline. The product (c) is then
read on the D scale directly adjacent to the index of the C scale.

The D scale is on the lower part of the body and the CI scale is on
the lower part of the slide. Hence the D and CI scale combination
is called a lower scale combination. (To avoid confusion only the
scales being used are shown in Figure 2.1 and in the figures which
follow.)

SLIDE\ HAIRLINE

/— RIGHT INDEX

log 8 ]

Figure 2.1—Use of D and Cl Scale Combination for Efficient
Multiplication of 2 by 4.

In figure 2.1, the D and the CI scales are used to multiply 2 by 4.
The hairline is set to the number 2 on the D scale. The slide is then
moved until the number 4 on the CI scale coincides with the hair-
line. The answer, 8, is read on the D scale opposite the 1 mark of
the CI scale, which is the right index of the scale.

The addition of log 2 and log 4 to obtain log 8 is shown in Figure 2.1.
The distances along the scales are proportional to the logarithms
of the number. This is the reason why adding these distances auto-
matically adds the logarithms.

The multiplication of 2 by 4 in Figure 2.1 required a slide movement
to the left so that the answer was read at the right index of the
slide. The multiplication of two numbers such as 2 and 8 requires a
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movement of the slide to the right so that the answer is read at the
left index of the slide, as in Figure 2.2. The hairline is set on 2 of
the D scale and the number 8 on the CI scale is moved to the hair-
line. Here it is noted that the scale length log 2 — (log 10 — log 8) =
log % = log 1.6, whereas we know that the product of 2 and 8 is
16. Hence the result 1.6 is correct except for the decimal point, which
is easily found by methods already described in Chapter 1. Thus the

product 16 is read on the D scale at the left index of the slide.

It is emphasized that either the left or the right index, whichever is
in contact with the D scale, is used to read the result on the D scale.

[
leg10-log 8 ——\
LEFT INDEX
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leg 8

1 16
[
Iog1.64] \
HAIRLINE
log 2

Figure 2.2—D and Cl Scale Combination for Multiplying 2 by 8.

Exercise 2.1

Multiplication Using the D and Cl Scales

1. 24.2 x 46.5 6. 8.62 x 5.88 11. 4.65 x 0.355

2. 0.765 x 0.136 7. 3.06 x 6.92 12, 0.00000484 x 57
3. 1.08 x 13.6 8. 0.00291 x 53 13. 62.4 x 13.5

4. 3.14 x 246 9. 68.3 x 0.047 14. 3.14 x 344

5. 5510 x 0.065 10. 2.22 x 360 15. 875 x 1545

2.2 MULTIPLICATION USING THE D AND C SCALES

Although the D and C scales are the most fundamental scales of the
slide rule and are used extensively for multiplication and division,
they are less efficient than the D and CI scales when applied to
multiplication.
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The multiplication of 2 by 4 might have been performed less effi-

ciently by using the D and C scales as shown in Figure 2.3.

DIVISION 19

logarithms. The example of Figure 2.4 indicates the division of
9 by 6. In this case log 9 — log 6 = log 1.5. The slide has been moved
to the right. Therefore the quotient 1.5 is read on the D scale at the

SLIDE - |°g 4 ——pd

/—HAIRLINE

LEFT INDEX —
E\} 2 3 4 5 8 7 881
T 4 r ! rf|f|:l'l'l
C1P 4 2 3 4 5 6 7 8 981
O i

log 8

Figure 2.3—D and C Scale Combination Used Inefficiently to Multiply 2 by 4.

By this method, the hairline is set on 2 of the D scale, the slide is
moved until the 1 mark or left index of the C scale coincides with the
hairline; then the hairline is moved to 4 on the C scale, and the
result, 8, is read at the hairline on the D scale. This method of
multiplication requires two movements of the hairline instead of
one and generally requires greater movement of the slide. It is not
recommended for multiplication of two numbers. However, this
method should be kept in mind for it greatly simplifies operations
such as multiplying or dividing a series of numbers, multiplying
a series of numbers by a single factor, solving proportions, etc., as
explained later in this chapter.

left index of the C scale.

Figure 2.4—0 and C Scale Combination for Dividing 9 by 6.

Another example is shown in Figure 2.5, in which 1.8 is dlv}lldeél
by 2.5. The hairline is set to 1.8 on the D scalfe. Then 2.5 on t e1
scale is moved to the hairline. The result, 0.72, is read on the D scale
at the right index of C since the slide was moved to the left.

log & HAIRLINE
LEFT INDEX —
4 5 6 7 891
° o\l % ? I ll = ll ] Lo
T T 1
o o0 2 3 & 5 6 7 B 91 \
e 15 SLIDE
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log 8

e——— log 2,5 ——=

log 10

t————— log 10 -log 2.5 —————

1 4
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28 7891
5 6
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Exercise 2.2

Multiplication on the D and C Scales

1. 2.46 x 3.52 6. 0.957 x 208 11. 0.01757 x 254
2. 1.27 x 0.224 7. 0.724 x 195 12. 777.5 x 46.2
3. 149 x 1.32 8. 0.0086 x 22.4 13. 1728 x 24

4. 2.25 x 2720 9. 10.5 x 0.542 14. 33,000 x 24.6
5. 7.12 x 9.60 10. 0.162 x 0.075 15. 45 x 1.487

2.3 DIVISION USING LOWER SCALE COMBINATIONS

In dividing two numbers, a D and C scale combination should be
used for the most efficient operation. Dividing involves subtracting

re—-log1.8—* HAIRLINE

log 7.2

Figure 2.5-D and C Scale Combination for Dividing 1.8 by 2.5.

From the figure the scale distances are as follows: log 1.8 + log 10

— log 2.5 = log l%’l = log 7.2. The number 7.2 is correct, except
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for the 'locati.on of the decimal point. This is located by mental
calculation, since dividing 1.8 by 2.5 obviously results in a number

less than 1.

Exercise 2.3

Division Using the D and C Scales

1. 9.30 =~ 3.08 6. 6.30 + 14.2 11. 54.2 + 2.24

2. 748 - 2.63 7. 1950 + 94.5 12, 26.8 + 12.3

3. 6.30 = 0.27 8. 9.30 =+ 6.50 13. 0.832 ~ 1.45

4. 1950 + 435 9. 748 + 3.54 14. 16.65 + 0.0363

5. 855 + 10.5 10. 450 + 57.2 15. 0.0346 + 0.000291

2.4 DIVISION OF THE SPECIAL FORM 1/N

In problems where the dividend is 1, that is, problems such as 1/3
1/4.5, and so forth, where we are finding reciprocals, the division is,
most efficiently done using the CI and C scales. As ftlas been stated
in Chapter 1, numbers on the CI scale are the reciprocals of numbers
directly opposite them op the C scale, and vice versa. We may then
state that for any quotient 1/N, opposite N on the C scale. read 1/N
on the CI scale. We can also, opposite N on the CI scale, read 1/N
on the C scale. ’

FOF qxample, the reciprocal of 0.72 can be found to be 1.39. Set the
hairline to 72 on the C scale and read 139 on the CI scale.

Exercise 2.4
Division Using Cl and C Scales

1.1+-31

5.1+ 27 9.1+ 0326
2.1+3.01 6. 1+ 027 10. 1 + 0.85
3.1 — 310 7.1+ 355 11. 1 + 246
4.1+ 27 8. 1+0.005 12.1 +1.21

2.5 MULTIPLICATION OR DIVISION USING THE UPPER SCALE
COMBINATIONS

The upper group of scales are designated DF, CF and CIF. These are
also referred to as the folded scales, and are so indicated by the letter
F because they begin and end at values other than 1. They may also
be used for multiplying and dividing, since they are identical to the
D,‘ C and CI scales, except that the index of each is very near the
middle of each scale.
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Figure 2.6 shows the use of the upper scales in multiplying. Here
1.1 is multiplied by 1.2 by setting the hairline to 1.1 on DF and
moving 1.2 on CIF to the hairline. The product 1.32 is read on DF
at the 1 mark or index of the CIF scale.

Let it be assumed that the slide was centered, with all indices in
line, before beginning the calculation. From Figure 2.6 the total
movement of the slide from its centered position was proportional
to log 1.1 + log 1.2 = log 1.32. The left index of the C scale has
moved exactly the same distance, so that the answer might also
be read on the D scale, at the left index of C.

Either the DF or D scale may be used, but it is often faster and more
convenient to use the D scale. There are graduations on only one
size of the indices of the C and CI scales and the use of the hairline
is unnecessary. The lower C and CI scales have two indices, and one
will always be adjacent to the D scale; while the upper CF and
CIF scales each have only one index. Notice that whenever the slide
is moved the lower index reading on D is the same as the upper

index reading on DF.
log 1.32 — 1.32
log 1.1 . /anx OF CIF

] |
DFf 4 5 6 7 881 M 2 3m
| T (R S S B O S | Ll
i | |°g1,2—-}-——-|/| [ { ! I
CIF 3 2 124 198 7 & Lo
] 2 3 4 S 6 7 8 91
G4 | [ | | I F |
= T T ™1 1 1 T [ \
? ‘ 2 3 4 5 6 7 8 981 SLIDE

_.luog 1.32L \HMHLINE

Figure 2.6—DF and CIF Scale Combination for Multiplying 1.1 by 1.2.

For multiplying 1.1 by 1.2 there is a definite advantage in using the
upper scales. The total movement of the slide from its centered
position in Figure 2.6 was'1.18 in. Had the D and CI scale combina-
tion been used, a slide movement of 8.66 in. would have been
required. The advantage of the upper group of scales for certain
operations is therefore obvious.

Division may be performed on the upper group of scales as follows:
to divide 8 by 2 efficiently, set hairline to 8 on DF and move 2 on
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CF to hairline, read 4 on D at right index of C. This requires a slide
movement of about 3.9 in. If the same operation were performed by
using the C and D scale combination, a slide movement of about 5.9
in. would be required.

2.6 CHOICE OF UPPER OR LOWER SCALE COMBINATIONS

For some operations the choice of scale combinations makes no
difference in efficiency, and so either the upper or lower group may
be chosen. For other operations a lower scale combination is more
advantageous, while for still other operations an upper scale com-
bination is best. To determine which combination is best to use, a
general rule is desirable. Such a rule may be stated definitely as
follows: Either lower or upper scale combinations may be used for
multiplication and division, but whenever one scale combination
requires moving the slide more than one-half its length, use the
other. By following this rule the maximum slide movement required
is one-half of 9.84 in. or about 5 in.

The student should perform the following exercises in multiplication
and division in order to familiarize himself with the six scales and
their most efficient uses. No attempt should be made to read results
more accurately than the instrument allows. In this connection it
will be remembered that accuracy is limited to four significant
figures for numbers whose first digit is 1 but to only three significant
figures for numbers beginning with the digits 2 to 9. The D and CI
or the DF and CIF scale combinations should always be used when
multiplying, whereas the D and C or the DF and CF scale combina-
tions should always be used when dividing.

Exercises 2.5, 2.6
Multiplication. or Division Using Upper or Lower Scale Combinations

Multiplication:
Perform the operation and indicate the most advantageous scale

combination.

1. 2.4 x 3.02 7. 213 x 12.11 13. 4.15 x 26.2
2. 1.52 x 2.95 8. 1.49 x 1.32 14. 29.2 x 7.68
3.612x34 9. 9.12 x 8.25 15. 20.8 x 95.7
4. 157 x 2.2 10. 71 x 9.6 16. 42.5 x 14.24
5. 3.24 x 7.22 11. 5.13 x 9.08 17. 2.25 x 3720
6. 9.18 x 3.32 12. 3.3 x 9.8 18. 392 x 10.33
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Division:
Perform the operation and indicate the most advantageous scale
combination.

19. 8.3 + 3.08 25. 93 + 218 31.93+65
20. 8.55 - 2.96 26. 8.55 -~ 105 32. 855 + 5.12
21. 7.48 + 2.63 27. 7.48 = 115 33. 7.48 - 3.54
22. 6.3 + 0.27 28. 6.3 ~ 14.2 34.63+175
23. 450 + 19.2 29. 450 + 104 35. 450 + 57.2
24. 1950 + 435 30. 1950 = 94.5 36. 1950 <+ 10.6

2.7 MULTIPLYING A SERIES OF NUMBERS

A great advantage in slide rule calculation is that any number of
factors may be multiplied together in one continuous operation to
obtain their product. In terms of logarithms, the addition of the
logarithms of a series of numbers is equal to the logarithm of the
product of the numbers. If more than two factors are to be multi-
plied together, the logarithms of the first two are added auto-
matically on the slide rule scales and to this sum the logarithm
of the next factor is added by the next setting, to this sum is added
the logarithm of the next factor, and so on, for any number of factors.
Therefore it is nof necessary, as in long hand multiplication, to
multiply the factors two by two and then to multiply these separate
products. A simple example will serve to illustrate the procedure.

Example 2.1 1.41 x 7.25 x 2.02 x 8.1 = 167.3

Operation  Set the hairline to 1.41 on D
Move 7.25 on CI to the hairline
Move hairline to 2.02 on C
Move 8.1 on CI to the hairline
Read 167.3 on the D scale at left index of C.

Only the final result needs to be set down on paper. About thirty
seconds are required to do the entire operation. By either long hand
or electric calculator multiplication, we would first multiply 1.41
by 7.25'to obtain 10.2225; then we would multiply 2.02 by 8.1 to
obtain 16.362; then 10.2225 would be multiplied by 16.362 to obtain
167.2605450. The numbers 10.2225 and 16.362 would need to be set
down on paper or transferred to another dial, even if a calculator
were used. Of course the final result 167.2605450 is accurate to ten
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significant figures. However, in ordinary design calculations such
accuracy is unnecessary and time is therefore wasted in doing un-
necessary work. Our slide rule result 167.3 is accurate to four
significant figures, a degree of acoiuracy usually sufficient.

Exercise 2.7
Multiplying a Series of Numbers

1.3 x2x15
2.21x32x1.3

3. 7.6 x b3 x 0.08

4, 0.096 x 8.15 x 18.4
5. 6.48 x 0.0266 x 0.039

6. 4.3 x 16.4 x 19.7 x 1.35
7. 34 x 1.6 x 0.062 x 74
8. 72.2 x 0.108 x 1.46

9. 10.9 x 0.103 x 6.15 x 92
10. 3.45 x 54.7 x 106.8

2.8 DIVIDING BY A SERIES OF NUMBERS
Division by a series is just as easy as multiplication by a series.
One computation follows another as in multiplication, but instead of
multiplying, the scale combinations resulting in division are used.
When performing a series of division computations, it is helpful to
use the D and CI scale combination for division; that is, for sub-
tracting logarithms. Here is an example.
1
Example 2.2 47 <524 x 1015 = 0.00401
Operation  Set 4.7 on C to right index of D
Move hairline to 5.24 on CI
Move 10.12 on C to hairline
Read 0.00401 on D at index of C

Once again, only the final result will be recorded. However, the
intermediate steps of the computation are available if they are
required.

Due to the presence of two methods of division (D and C or D and
CI scales) and two sets of scales (lower combination or upper com-
bination), we may choose the most convenient method and scales to
perform either multiplication or division when a series of factors
is involved. It will be well to keep in mind that in multiplying,
one must add logarithms and in dividing, one must subtract loga-
rithms. By noting, always, the direction of the numbering and
graduations of the scales one plans to use, errors will be avoided.

3!
4
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Exercise 2.8
Dividing by o Series of Numbers

1 ! 4 .
" 3.25x4.28x%x6.13 * 0.098 x 6.82 x 1.103
2 1 5 L

" 1.04 x 1.71 x 9.25 " 0.0021 x 7.63 x 0.923

1 1
T 0.02x0164 x 3.6 . 36.5 % 0.0095 x 1.3 x 12.43

3

2.9 COMBINED MULTIPLICATION AND DIVISION SERIES

A great advantage of the slide rule is that a number of calculations
can be performed in one continuous operation. It is not necessary to
record the answer to intermediate steps of a compound problem.

The process of combining multiplication and division in a series
of computations is as simple as combining the operations just illus-
trated. In the example that follows, two sequences of operations are
described.

2.5 x 5.85 x 16.4
Example 2.3 757739 x 3.36

Operation (A) Set hairline to 2.5 on D
Move 5.85 on CI to hairline
Move hairline to 16.4 on C
Move 4.35 on C to hairline
Move hairline to 13.9 on CI
Move 3.36 on C to hairline
Read 1.18 on D at left index of C.

Operation (B) Set hairline to 25 0on D
Move 4.35 on C to hairline
Move hairline to 5.85 on C
Move 13.9 on C to hairline
Move hairline to 16.4 on C
Move 3.36 on C to hairline
Read 1.18 on D at left index of C.

=118

While there is no difference in the efficiency of the two sequences
of operations, the first sequence, Operation A, is recommended.
It is believed that fewer errors result by first using all factors in
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the numerator, then next using all factors in the denominator. In
this way, one first concentrates on continuous multiplication, then
on continuous division without aiternating from one process to
the other. Therefore, the first method shown for solving the last
example is followed in the next examples.

120 x 8.25 x 19.1 X 9.6 _
Example 2.4 430 504 x 25 ~ 098

Operation  Set hairline to 120 on D
Move 8.25 on CI to hairline
Move hairline to 19.1 on C
Move 9.6 on CI to hairline
Move hairline to 40.5 on CI
Move 3.24 on C to hairline
Move hairline to 50.4 on CI
Move 25 on C to hairline
Read 1.098 on D at left index of C.

30.6 x 41.2 x 541 _
Example 2.5 @08E X713 0.561

Operation  Set hairline to 30.6 on D
Move 41.2 on CI to hairline
Move hairline to 541 on C
Move 40.8 on C to hairline
Move hairline to 40.8 on CI
Move 7.3 on C to hairline
Read 0.561 on D at right index of C.

100 x (60.5)°
48 x 3(10)* x 655

Operation  Set hairline to 60.5 on DF
Move 60.5 on CIF to hairline
Move hairline to 60.5 on C
Move 48 on C to hairline
Move hairline to 3 on CI
Move 655 on C to hairline
Read 0.0235 on D at right of index C.

= 0.0235

Example 2.6
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Exercise 2.9

Combined Multiplication and Division Series

1 916 x 0.752 685 x 2.36
- 9, ————

5.6 195 x 0.0625

9 42.6 x 1.935 10 815 x 94.5
’ 750.3 T 24.8 x 7.25

3 56.7 x 0.00336 11 0.324 x 48,500 x 5.95
" 15.06 x 8.23 ’ 88.5 x 1920

4 0.916 ' 12 12,800 x 0.0425 x 785
"90.5 x 13.06 ) 36.8 x 495

5 755 x 1.15 13 75.4 x 6.35 x 3.78
* 51.4 x 0.093 " 5.85 x 8.45 x 268

6 1573 x 4618 14 368 x 0.0525 x 975
T 3935 x 97 © 23.5 x 3.65 x B.36

7 M 15 372 x 0.000234 x 8.72
) 64.2 © 145.3 x 96.6 x 0.00247

58.7 x 0.0125 37.2 x 0.08 x 192.3
9.65 © 85 x 63 x 8.63

2.10 MULTIPLICATION OF A SINGLE FACTOR BY A SERIES OF NUMBERS

In engineering calculations it is frequently necessary to obtain the
products of several different numbers each multiplied by the same
single factor. In this type of problem the best procedure is to set the
index of the C scale to the single factor on the D) scale and to use the
D and C or the DF and CF scale combination for multiplying. By this
method only the hairline needs to be moved to perform the suc-
cessive multiplications.

Example 2.7 Multiply 1.27 by each of the following numbers:
3.16, 4.28, 6.55, 8.4 and 9.85

Operation  Set the left index of C to 1.27 on D
Move hairline to 3.16 on C, reading 4.01 on D
Move hairline to 4.28 on C, reading 544 on D
Move hairline to 6.55 on C, reading 8.32 on D
Move hairline to 8.4 on CF, reading 10.67 on DF
Move hairline to 9.85 on CF, reading 12.51 on DF.
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2.11 DIVISION OF A SINGLE FACTOR BY A SERIES OF NUMBERS

In this type of problem it is best to use the reciprocal scales CI and
CIF. Division of a single factor by a series of numbers is illustrated
by the following example.

Example 2.8 Divide 41.5 by each of the following numbers:
12.4, 20.8, 44.5 and 92.

Operation  Set right index of CI to 41.50on D
Move hairline to 12.4 on CI, reading 3.35 on D
Move hairline to 20.8 on CI, reading 1.995 on D
Move hairline to 44.5 on CIF, reading 0.933 on DF
Move hairline to 92 on CIF, reading 0.451 on DF.

2.12 DIVISION OF A SERIES OF NUMBERS BY A SINGLE FACTOR
Likewise, a series of numbers can be divided by a single factor,
simply by multiplying each number in the series by the reciprocal
of the single factor.

Example 2.9 Divide each of the following numbers by 0.561:
3.65, 30.5, 95.2 and 6.95.

Operation  Set 0.561 on C to the right of index D
Move hairline to 3.65 on C, reading 6.51 on D
Move hairline to 30.5 on C, reading 54.4 on D
Move hairline to 95.2 on CF, reading 16%.7 on DF
Move hairline to 6.95 on CF, reading 12.39 on DF,

In effect, we have multiplied the series of numbers by ﬁz 1.784,
which is read on D at the left index of C.

In setting an index of the slide in the above operations, either the
left or the right index of the slide might have been used. It should
be remembered, however, that the slide need not be moved more
than one-half of the scale length. The number 3.16 of the D scale
is located approximately at its mid point. Therefore, for a single
factor less than 3186, set the left index; for one greater than 316,
set the right index of the slide. If this rule is followed, the single
factor may be either muliiplied or divided by any number without
again moving the slide. It is only necessary to move the hairline
to perform the successive cperations.

USE OF 7 29

Exercises 2.10, 2.11 and 2.12

Multiplication or Division of a Single Factor by a Series of Numbers;
Division of a Series of Numbers by a Single Factor.

1. Multiply 320 successively by 1.15, 2.42, 3.18, 4.5, 5.42, 6.88,
7.96, 8.05, and 9.6. :

2. Divide 7.18 successively by 1.02, 2.15, 3.29, 4.18, 5.67, 6.41,
7.85, 8.76, and 9.34.

3. Divide 107, 181, 257, 294, 352, 671, 707, 775, 988 each by 358.

2,13 MULTIPLICATION AND DIVISION USING 7

Since the folded scales (DF, CF, and CIF) are folded at = (CIF at
1/m), the value of = and 1/m on the three scales is opposite the
indexes of the corresponding D, C and CI scales. Since the D scale
is in a fixed position relative to the DF scale with its indexes lined
up with 7 on the DF scale, it is easy to multiply by 7. Simply set
the hairline on a number on the D scale and read = times the
number on the DF scale.

Example 2.10 = x 24 = 7.54

Operation Set hairline on 2.4 on the D scale
Read 7.54 on the DF scale.

Note the scale instruction gymbeols at the extreme left end of the
D and DF scales. Approximately, the D scale is symbolized by an X
while the DF scale has an 7 X symbol. The C and CF have similar
symbols indicating the multiplication by 7 can also be carried out
on these scales in the same manner as the D and DF scales. Since
CIF is the reciprocal of CI, it carries the symbol 1/7 X and CI has
1/X because it is the reciprocal of the C scale.

To divide by = simply set the hairline on the number to be divided
by 7 on the DF scale and read the answer on the D scale.

Example 2.11 1—1? =414

Operation Set hairline on 13 on DF scale
Read 4.14 on the D scale.

Complete use of these scales using 7 should be understood. The
following examples will serve to introduce several popular problems
using .
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Example 2.12 5.9 ;52.217 — 163

Operation Set hairline to 5.9 on D
Move 2.2 on CI to hairline
Move hairline to 25 on CI
Read 1.63 on DF at hairline.

Example 2.13 21.2 X 7.7 _
= =6.5
87

Operation Set hairline 21.2on D
Move 7.7 on CI to hairline
Move hairline to 8 on CIF
Read 6.5 on D at hairline.

Exercise 2.13
Multiplication and Division Using 7

5. 31m
1. 89.2 &
37
2.7 X 6. 937
. , 2.6 X398
3. 6 e i . —-'__116 < 7
_ o 169 x 114 x 7.057
4. 0.0246 + = - "E0S x 2.6 X 2.17

2.14 RATIO AND PROPORTION

The principle of proportion is convenient in solving simple equa-
tions without having to solve the equations explicitly for the
unknown. The use of proportion in this manner is perhaps best
illustrated by the use of simple algebraic expressions. Let x be the
unknown quantity which is to be solved for when the known quanti-
ties are C’, D, C, or D. In a proportion such as % = % C',Dand C
are known and x is to be determined. If we set the number D on a
D scale (D or DF) opposite C on a C scale (C or CF), x may be read
directly on the D scale opposite C’ on the C scale.
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x 3 _ _

ﬁ = 2, X = 7.65

Operation Set hairline to 3 on DF
Move 2 on CF to hairline
Move hairline to 5.1 on CF
Read 7.65 on DF at hairline

Example'2.14 Solve for x in

ol . ., 7'55_\! SLIDE
B 5 6 7W8 91 2 1

OF | T A O o | i1 /_
( 4

Figure 2.7—Ratlos using the DF and CF scales

In example 2.14, notice that the physical form of the proportion
is exactly duplicated on the slide rule when DF and CF scales are
used. The D and C scales could also be used to solve this ratio
problem. Some problems lend themselves to only these scales for
solution. It should be noted in figure 2.7 that at any position of the
slide, the ratio of any number on the C or CF scale to its opposite
on the D or DF scale is the same ratio of any other pairs of numbers
on these scales. The ratio of 3 to 2 is the same as 6 to 4, ¢ to 6,
and so forth.

87 _ x _444 _ z
1527276 y 393

Operation Set hairline at 8.7 on DF.
Move 15.2 on CF to hairline.
Move hairline to 27.6 on CF.
Read x = 15.8 on DF.
Move hairline to 44 .4 on DF.
Read y = 77.5 on CF.
Move hairline to 39.3 on C.
Readz = 2250n D.

Example 2.15
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Exercise 2.14
Ratic and Proportions

, 214 _ x 5 718 324

© 195 121 T x 179

71 1825 , 356 _425 _x_y
"705 0 x "5l x y z

2.15 QUADRATIC EQUATION SOLUTION BY FACTORING

The slide rule may be used for the rapid factoring of a quadratic
equation. All that is required is a single setting of the slide and
mental summation of factors. Any quadratic equation may be
reduced to the form: x> + Ax + B =0

The factors, or roots, of the equation are designated as —r, and —r,,
and must satisfy the following conditions.

Dr+r;=A
(2) I'll'g = B

The general procedure of finding two factors, whose sum is A and

whose product is B, on the slide rule follows:

(1) Set the appropriate index of C opposite the location of B on the
D scale. Now the slide is in such a position that for any setting
of the indicator, the product of the reading at the hairline on
the D and CI scales, or on the DF and CIF scales, is equal to
the number B.

(2) Move the hairline so that the sum of the readings on the D and
CI, or the DF and CIF scales is equal to the number A.

The following examples will clarify this procedure.
Example 2.16 x*> + 10x + 15 = 0

Operation Set left index of C at 15 on D.
Move hairline until r, + r, = 10.

(They will be positive as both 10 and 15 are posi-
tive. This occurs with hairline at 8.15 on CI and
1.84 on D. Thus the roots —r, and -r, are —B.15
and —1.84.)

Sum = A =10=8.15+ 1.84
Product = B = 15 = (8.15)1.84)
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Example 2.17 x2 - 12.2x — 172 =0

Operation Set left index of C at 17.2 on D.

Move hairline until r, + r; = —12.2 which is when
the hairline is at —13.5 on DF and 1.275 on CIF.
(Since the product is negative, one of the factors
must be negative. Also, since the sum is negative
the larger factor must be negative.) The values of
r, and r, are —13.5 and 1.275, therefore the roots
—r, and —r, are 13.5 and —1.275.

Sum = A = —-13.5 + 1.275 = —12.225
Product = B = (-13.5X1.275) = —-17.2

Hence, it is obvious that this method involves trial-and-error in
setting the hairline, and a little practice is necessary to master
the technique.

Exercise 2.15
Solving Quadratic Equations by Factoring

1. x* - 345x+18=0 4 2x? + 828x + 840 =0
2.x2-211x+32=0 5.1.2x* - 13.38x + 36 = 0
3. x*-202x—-120=0




CHAPTER 3

SQUARE ROOTS AND SQUARES, CUBE ROOTS AND CUBES

|
The Versalog II permits solving any power or root of a number. ‘
The powers and roots most commonly encountered can be rapidly

calculated with just one setting of the hairline. For squares and |
square roots, a choice of scales is available to permit greater speed |
and accuracy in these calculations. For operations involving |
exponents other than 2, 3, 4, 6 and # (and 4, %, 4, §, and %), the LL

(log log) scales are used. Uses of the R, R,, A and K scales are dis- |
cussed in this chapter. ‘

3.1 SQUARES AND SQUARE ROOTS USING Ri AND Rz SCALES

The R, and R, scales are called the “root” scales. Actually, they are
the two halves of one 20 inch scale (50 cm.) similar to a D scale,
but twice as long. The R, scale is 25 cm. long, graduated and num-
bered from left to right, and ranges from 1 to V10, which is 3.16; II
while the R, scale, also 25 cm. 131/1& and graduated and numbered
from left to right, ranges from V10, (or 3.16) to 10. These scales
yield unusual accuracy in solving for squares and square roots.

The simple mathematical relationship of the R and D scales may
be expressed as follows: R? = D. Taking logarithms of both sides of
the equation, 2 log R = log D. Therefore the scale distance, from
the index to any number on the R scale, is twice the scale distance |
to the same number on the D scale. This means that readings of
the R scales are twice as accurate as readings of the D scale.

SQUARES

In squaring a number, we set the hairline on the number on the
t R, or R, scale and read its square directly on the D scale.

To square a number whose digits fall between 1 and 3.16:
1. Set the hairline to the number on R,.

2. Read the square of the number on D at the hairline.

To square a number whose digits fall between 3.16 and 10:
1. Set the hairline to the number on R.,.

F 35
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2. Read the square of the number on D at the hairline.
Example 3.1 32=9.

Operation  Set hairline on 3 on the R, scale.
Read square, 9, on the D scale at hairline.

Example 3.2 (7.1)* = 50.4

Operation  Set Rairline on 7.1 on the R, scale.
Read square, 50.4, on the D scale at hairline.

When squaring larger or smaller numbers than used in the exam-
ples above, the location of the decimal point requires more con-
sideration. Use of the scientific notation method (as outlined in
Section 1.6) is recommended. In squaring numbers by use of the
scientific notation method, .
Nz = (N x 10m)* = N* x 10",

The scientific notation method is precise. However, a short cut is
available for quick placement of the decimal point, and it may be
well to remember the following simple rules.

Squares of numbers greater than 1 (> 1)

1. The square of a number greater than 1 on the R, scale will have
an odd number of digits to the left of the decimal point, one less
than twice the number of digits to the left of the decimal point
in the number being squared.

2. The square of a number greater than 1 on the R, scale will have
an even number of digits to the left of the decimal point, exactly
twice the number of digits to the left of the decimal point in the
number being squared.

Squares of numbers less than 1 (< 1):

Zeros appearing to the right of the decimal point and before the first
non-zero digit in a number less than 1 may be defined as significant
ZEros.

1. The square of a number less than 1 on the R, scale will have
an odd number of significant zeros, one more than twice the
number of significant zeros in the number being squared.

2. The square of a number less than 1 on the R, scale will have an
even number of significant zeros, exactly twice the number of
significant zeros in the number being squared.
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The following examples show both methods of decimal point
location.

Example 3.3 (26.53)* = 704

Operation  Set hairline to 26.53 on R,.
Read 704 on D at hairline.
Locate decimal point by either,
a) (2,653 x 10')2=7.04 x 10* = T04.
b) R,, (2 X 2) — 1 = 3 digits.

Example 3.4 (6,110)* = 37,300,000

Operation  Set hairline to 6,110 on R..
Read 37,300,000 on D at hairline.
Locate decimal point by either,
a) (6.11 x 10%)* = 37.3 x 10° = 37,300,000.
b) R,, 2 x 4 =8 digits.

Example 3.5 (0.1575)* = 0.0248

Operation  Set hairline to .1575 on R,.
Read .0248 on D at hairline.
Locate decimal point by either,
a) (1.575 X 1071 = 2.48 x 10-2 = 0.0248.
by R,, (2 x 0) + 1 = 1 significant zero.

Example 3.6 (0.00917)* = 0.0000841

Operation  Set hairline to .00917 on R,.
Read .0000841 on D at hairline.
Locate decimal point by either,
a) (9.17 x 1073)* = 84.1 x 107% = 0.0000841.
b) R,, 2 X 2 = 4 significant zeros.

SQUARE ROOTS
The square root of a number N is that number whose square is N.
For example,

ifN=29
then\/§=9%=3

and 3*=9.

The superscript after 9 is , the reciprocal of 2. This inverse relation-
ship indicates a reversal of the slide rule procedure. Thus, the
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square root of numbers on the D scale are read directly opposite
on the R, or R, scale. Since the relationship between the Rand D
scales is R = VD, conversely R = D. It should be noted that the
R scales have a scale instruction symbol Vx indicating that the R
scales represent the square roots of numbers on the D scale.

A scientific notation method is recommended to correctly perform

the operation. The square root required is expressed as (N x 1(}“)%,
when the exponent n must be evenly divisible by 2, while the
number N can be between 1 and 100. Using the short cut rules for
positioning the decimal point, odd numbers of digits are again
associated with the R, scale, while even numbers of digits are
associated with the R, scale. The rules are as follows:

Square roots of numbers greater than 1 (> 1):

1. The square root of a number greater than 1 with an odd number
of digits to the left of the decimal point is found on the R, scale.
To obtain the number of digits to the left of the decimal point
in the square root, add one to the number of digits to the left
of the decimal point in the number and divide by two.

2. The square root of a number greater than 1 with an even number
of digits to the left of the decimal point is found on the R, scale.
The number of digits to the left of the decimal point in the square
root is exactly half the number of digits to the left of the decimal
point in the number.

Square roots of numbers less than 1 (< 1):

1. The square root of a number less than 1 with an odd number of
significant zeros to the right of the decimal point is found on
the R, scale. To obtain the number of significant zeros in the
square root, subtract one from the number of significant zeros
in the number and divide by two.

2. The square root of a number less than 1 with an even number of
significant zeros or no significant zeros to the right of the decimal
point is found on the R, scale. The number of significant zeros
in the square root is exactly half the number of significant
zeros in the number.
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Example 3.7 V196= 14

Operation Set hairline to 196 on D.
Read square root, 14, on R, at hairline.
Locate decimal point by either,

a) (196 x 10? )%= 1.4 x 10' = 14.

b) Ry, 3-*2'—1= 2 digits.

Example 3.8 V124,600= 353

Operation Set hairline to 124,600 on D.
Read 353 on R, at hairline.
Locate decimal point by either,

a) (12.46 x 100} = 3.53 x 102 = 353,
b) R., -g= 3 digits.

Example 3.9 V0.43 = 0.656

Operation Set hairline to .43 on D.
Read .656 on R, at hairline.
Locate decimal point by either,

a) (43 x 102 )% = 6.56 X 107! = .B656.

b) Rz,g= 0 significant zeros.

Example 3.10 V0.00097 = 0.03115

Operation Set hairline to .00097 on D.
Read .03115 on R, at hairline.
Locate decimal point by either,

a) (9.7 x 107 )%= 3.115 x 1072 = .03115.

b) R”i.:_

5 L_ 1 significant zero.
Selection of the R, or R, scale on which to read the square root of a
number is determined by the number of digits to the left of the
decimal point for numbers greater than 1, and the number of
significant zeros in numbers less than 1. This is further illustrated
by the following examples.
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Example 3.11 V0.5 = 0.707

Operation Set hairline to .5 on D.
Read .707 on R, at hairline.

Example 3.12 V0.05 = 0.2236

Operation Set hairline to .05 on D.
Read .2236 on R, at hairline.

Example 3.13 V0.005 = 0.0707

Operation Set hairline to .005 on D.
Read .0707 on R, at hairline.

Example 3.14 V0.0005 = 0.02236

Operation Set hairline to .0005 on D.
Read .02236 on R, at hairline.

Example 3.15 V0.00005 = 0.00707

Operation Set hairline to .00005 on D.
Read .00707 on R, at hairline.

Example 3.16 V0.000005 = 0.002236

Operation Set hairline to .006005 on D.
Read .002236 on R, at hairline.

Exercise 3.1

Squares and Square Roots Using the Ry and Rz Scales
1. (20.4) 11. /820,000
2. (T15) 12. V1,265

3. (1,070) 13. V71,500

4. (125.4) 14. /51,000,000
5. (0.85) 15. V1,970,000
6. (0.000157) 16. V660

7. (0.094)z 17. V0.424

8. (0.0076)* 18. V0.0875

9. V27 19. V0.00097

. V925 ' 20. V0.00725

—
o
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3.2 SQUARES AND SQUARE ROOTS USING THE A SCALE

The A scaie can also be used for square and square root calculations.
It ranges from 1 to 100. When the greater accuracy provided by
the R, and R, scales is not required, some series of comnputations
are more rapidly solved using the A scale. The A scale is, in effect,
two short (12.5 em.) D scales placed end to end, and that is approxi-
mately how it is used. In finding squares and square roots, the left
half of the A scale is used as a D scale, and the left half of the D
scale is used as an R, scale. Likewise, the right half of the A scale
is used again as a D scale, and the right half of the D scale is used
as an'R; scale. The simple mathematical relationship of the A and
D scales may be expressed as, D2 = A. Scale instruction symbol on
the A scale is X2

SQUARES

The square of numbers on the D scale are read directly opposite on
the A scale. The procedure only requires the use of the hairline.
The short cut rules for the placement of the decimal point are the
same as when using the R, and R, scales, except that the left half
of the A scale is associated with odd numbers of digits (as the R,
scale) and the right half associated with even numbers of digits
(as the R, scale).

Example 3.17 (24.8)* = 615

Operation Set hairline to 24.8 on D.
Read 615 on A at hairline.
Locate decimal point by either,
a) (2.48 x 10')* = 6.15 X 10* = 615.
b) A left, (2 x 2)— 1 =3 digits.

Example 3.18 (417)* = 174,000

Operation Set hairline to 417 on D.
Read 174,000 on A at hairline.
Locate decimal point by either,
a) (4.17 x 10?)* = 17.4 x 10* = 174,000.
b} A right, 2 x 3 = 6 digits.

Example 3.19 (0.0196)* = 0.000384

Operation Set hairline to .0196 on D.
Read .000384 on A at hairline.
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Locate decimal point by either,
a) (1.96 x 1072)2 = 3.84 x 10~* = 0.000384.
b) A left, (2 x 1) + 1 = 3 significant zeros.

Example 3.20 (0.822)* = 0.676

Operation Set hairline to .822 on D.
Read .676 on A at hairline.
Locate decimal point by either,
a) (8.22 x 1071)* = 67.6 x 1072 = 0.676.
b) A right, 2 X 0 = 0 significant zeros.

SQUARE ROOTS

The square roots of numbers on the A scale are read directly opposite
on the D scale. The procedure is essentially the reverse of finding
squares using the A scale, but in locating numbers on the A scale,
the position of the decimal point is important since the A scale
ranges from 1 to 100. For numbers outside of this range, the use
of the scientific notation method is recommended. The number is
rewritten in the form of N x 10", where n must be evenly divisible
by 2, and N is between 1 and 100. The number N is then located
on the A scale, V'N read on the D scale, and the number rewritten
in its ordinary form.

A short cut rule can also be used. The rule for locating the decimal
point is the same as when using the R, and R, scales, but in locating
numbers on the A scale, the following can be used.

Square roots of numbers greater than 1 (> 1):

1. For the square root of a number greater than 1 with an odd
number of digits to the left of the decimal point, use the lef half
of the A scale.

2. For the square root of a number greater than 1 with an even
number of digits to the left of the decimal point, use the right half
of the A seale.

Square roots of numbers less than 1 (< 1)

1. For the square root of a number less than 1 with an odd number
of significant zeros to the right of the decimal point, use the left
half of the A scale.
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2. For the square root of a number less than 1 with no significant

zeros or an even number of significant zeros to the right of the
decimal point, use the right half of the A scale.

Example 3.21 V5480 =74.0

Operation Set hairline to 5,480 on right half of A.
Read 74.0 on D at hairline.
Locate decimal point by either,

1
a) (54.80 X 10°)! = 7.40 x 10" = 74.0.
b) A right, 5 = 2 digits.

Example 3.22 V54,800 = 234

Operation Set hairline to 54,800 on left half of A.
Read 234 on D at hairline.
Locate decimal point by either,

1
a) (5.48 X 109)* = 2.34 x 10% = 234,
b Aleft, 22+ = 3 digits.

Example 3.23 Vv 0.0000176 = 0.0042

Operation Set hairline to .0000176 on right half of A.
Read .0042 on D at hairline.
Locate decimal point by either,

1
a) (17.6 X 10-%)° = 4.2 x 107% = .0042
b) A right, %= 2 significant zeros.

Example 3.24 V0.000176 = 0.01327

Operation Set hairline to .000176 on left half of A.
Read .01327 on D at hairline.
Locate decimal point by either,

a) (1.76 X 10‘4)% = 1.327 x 1072 = 0.01327.

b) A left, %l= 1 significant zero.
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Exercise 3.2
Squares and Square Roots Using the A Scale

1. 4.76 7. V4.83

2. 0.1492 8. V0.775
3. 13.7 9. V483

4. 0.037: 10. V0.028
5. 238¢ 11. V483

6. 0.007852 12. V0.00186

It is suggested Exercise 3.2 be re-worked using the R, and R, scales.
Notice the greater degree of accuracy of the R scales.

3.3 COMBINED OPERATIONS WITH SQUARES AND SQUARE ROOTS

Combined operations are a series of operations which include the
square or square root of a number. The inclusion of the A scale
together with the R, and R, scales on the VERSALOG II provides
a unique advantage of mathematical and slide rule technique in
the solution of this type of computations.

CHOICE of R1 and Rz or A SCALES

It is evident from above that the R scales provide greater accuracy
in determining squares and square roots than does the A scale.
When the increased accuracy of the R scales is not required, how-
ever, a choice of using either the R or A scales is possible. For
combined operations, this choice should be exercised in such a way
as to minimize the number of settings necessary to solve the given
problem. For example, an operation of the form

kVx

lends itself to the use of the A scale since the setting of the number
x on A projects the reading V'x directly onto the D scale, where it
can readily be multiplied by k. On the other hand, an operation
of the form

kx*

is best performed by using the R scales since setting the number
x on R projects the reading x* directly onto the D scale, where it
can be readily multiplied by k. The following examples illustrate
some common variations of these general principles.
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V47.2 x 7.85

Example 3.25 1351 X611

= 0.653

Operation Set hairline to 47.2 on A.
Move right index of C to hairline.
Move hairline to 7.85 on CF.
Move 13.51 on CF to hairline.
Move hairline to 6.11 on CIF.
Read .653 on DF at hairline.

(3.485)* X 9.44
0777 X 3.9

Operation Set hairline to 3.485 on R,.
Move 9.44 on CI to hairline.
Move hairline to .777 on CL
Move 3.9 on C to hairline.
Read 37.8 on D at right index of C.

9.7 x 14
Example 3.27 ~o35 = 7.6

Operation Set hairline to 9.7 on D.
Move 14 on CI to hairline.
Move hairline to 2.35 on CL
Read 7.6 on R, at hairline.

Example 3.26 37.8

4.1 g
Example 3.28 (_.W = 0'233) = 6.4
Operation Set hairline to 4.1 on D.
Move 6.95 on C to hairline.
Move hairline to .233 on CI.
Read 6.4 on A at hairline.

AREA OF CIRCLES

Finding the area of a circle when the radius is given is a commonly
encountered problem. Solution requires only a single setting of the
hairline, which is another decided advantage of the R, and R, scales.
Set the radius, r, on the R, or R, scale, and read the area, #r?, on the
DF scale. (The value r® is available at the hairline on the D scale.)

Example 3.29 Find the area of a circle whose radius is 4.82 feet.
Area = 73 square feet; #(4.827 = 73
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Operation Set hairline to 4.82 on R,.
Read area, 73, on DF at hairline.

When the area of a circle is known and the radius required, the
inverse of the above procedure can be used. Set the area on the DF
scale and read the radius on either the R, or R, scale, whichever is
appropriate. The same rules as stated in Section 3.1 apply to the
selection of the proper root scale.

Example 3.30 Find the radius of a circle whose area is 2,670
sq. in. Radius = 29.15 in.:
2870 _ 2915
Operation Set hairline to 2,670 on DF.
Read 29.15 on R, at hairline.

When the diameter of a circle is given, rather than radius, the area
2
can be found by solving for ﬂ, where d is the diameter. The

operation is similar to Example 3.29, but a setting of the slide is
- necessary for the division.

Example 3.31 Find the area of a circle whose diameter is 2.437 in.
Area = 4.66 sq. in.:

n(2.;137}2 o

Operation Set hairline to 2.437 on R,.
Move 4 on C to hairline.
Move hairline to left index of C.
Read area, 4.66, on DF at hairline.

Exercise 3.3
COMBINED OPERATIONS WITH SQUARES AND SQUARE ROOTS;
AREAS OF CIRCLES

i 17V676 5 (11.45>< ﬁ.sqr)‘*
"319x 12 “\1.605 x 5.35
o (147 X 3.2 g (\/Eﬁ X 4)2
" 225 % 64 2.36
3. V2T x 413 7. (w(6.69% x 1,197
4 (3.9557

" 41x249
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8. Find the area of circles whose radii are known:
a) 6; b) 4.2; ¢) .0581; d) 31; e) 1.314.

9. Find the area of circles whose diameters are known:
a) 7.1; b) 42; ¢) 1.09; d) .0495; e) 1,700. -

10. Find the radius of circles whose areas are known:
a) 116.5; b) .0481; ¢) .601; d) 760; e) 80.4.

3.4 CUBES AND CUBE ROOTS USING THE K SCALE

The K scale is used with the D scale for finding cubes and cube
roots. Since these two scales are of equal length and their mathe-

matical relationship is 1 = K, it follows that log D = 1—0%5.

Therefore, the K scale is divided into three equal segments, each
segment graduated and numbered from left to right. The first
segment extends from 1 to 10, the second from 10 to 100, and the
third from 100 to 1,000. Sinee the scale distance from the index
to a number on K is only one-third the scale distance to the same
number on D, the accuracy of K scale readings is only one-third
that of the D scale readings.

CUBES

Cubes of numbers on the D scale are read directly opposite on the
K scale. The K scale has a self instruction symbol x* relating that
D? = K. For numbers on the D scale, between 1 and 10, the location
of the decimal point is indicated by the K scale, since it ranges
from 1 to 1,000,

Example 3.32 (6.1¥ = 227

Operation Set hairline to 6.1 on D.
Read .227 on K at hairline.

For numbers larger than 10 and smaller than 1, the location of the
decimal point is not as obvious and the use of the scientific notation
method again is recommended. Briefly, since (N x 10" )* = N3=10%",
the K scale is used for finding the cube of N and the power of ten for
relocating the decimal point. If preferred in such cases, a definite
rule may be followed:
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If the decimal point is moved n number of places in a number set
on D, it must be moved back 3n places in the cube, which is read
on K.

Example 3.33 (1,214 = 1,790,000,000

Express problem as (1.214 x 107
Set hairline on 1.214 on D.

Read 1.79 on K at hairline.
Answer, 1.79 x 10° = 1,790,000,000.

Example 3.34 (0.0721% = 0.000375

Operation

Operation Express problem as (7.21 x 107%)%,
Set hairline to 7.21 on D.
Read 375. on K at hairline.
Answer, 375 X 10~% = .000375.
CUBE ROOTS

Cube roots of numbers on the K scale are read directly opposite
on the D scale. Therefore, the cube root of numbers, on the K scale,
between 1 and 1,000 range between 1 and 10 as read on the D scale.

Example 3.35 ¥5.2=1.733

Set hairline to 5.2 on K.
Read 1.733 on D at hairline.

Operation

For numbers beyond the range of 1 to 1,000, use of a modified
scientific notation form is recommended to assure correct placement
of the decimal point. In the modified scientific notation method, the
number is expressed as N x 10°, where n must be evenly divisible
by 3 while N can range from 1 to 1,000 (since the K scale ranges
from 1 to 1,000). The power of 10(n) must be evenly divisible by
3 to enable removal from the inside of the cube root radical. Again,
if preferred, a definite rule may be followed:

If the decimal point is moved n number of places in a number
set on K, it must be moved back % places in the cube root, which

is read on D.

e N

Example 3.36 V26,400 = 29.8

Express problem as (26.4 x 10° )‘;‘.
Set hairline to 26.4 on K.

Read 2.98 on D at hairline.
Answer, 2.98 x 10" = 29.8.

Operation

Example 3.37 ¥0.0052 = 0.1732

Express problem as (5.2 X 1073 é.
Set hairline to 5.2 on K.

Read 1.732 on D at hairline,
Answer, 1.732 x 1071 = 1732,

Operation

V/0.000475

Example 3.38 16

= 0.01696

A3/
Operation 1765 4

Set hairline to 475 on K.

Move 4.6 to C to hairline.

Read 1.696 on D at index of C.
Answer, 1.696 X 107% = (.01696.

Exercise 3.4
Cubes and Cube Roots Using the K Scale

1. (1.26)3 10. V1,720
2. (2.715) 11. ¥29,000
3. (5.85¢ 12. ¥560,000
4, (417 13. (0.245)°
5. (7500 14. (0.036)
6. (3.27 © 15. (0.0048)"
7. V6 16. ¥0.32

8. V24 17. ¥0.041
9. V270 18. ¥0.0075

Express problem as  =— X (1079)°,
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3.5 SPECIAL POWERS AND ROOTS USING A, K AND R: AND R2 SCALES
Since the A, K and R scales are all related to the D scale, an inter-
relation exists between each of these scales. Using the R,, Ry,
A and K scales, powers of 4, 6 and $ (and roots of {, 4 and %) can be
found with a single setting of the hairline. As was previously
mentioned, the mathematical relationship between these scales
may be expressed as: R®=D, D = A, and I’ = K, and therefore,
Ri= A R'= K and A*= K*.

POWERS OF 4 AND ROOTS OF

The R, and R, scales are used with the A scale for powers of 4 and {.

The square of numbers on an R scale are directly opposite on the

D scale, and the square of numbers on the D scale are directly ]
opposite on the A scale. Therefore, the 4th power of numbers on an %
R scale are directly opposite on the A scale. '

Symbolically, N* = (N3 Ni = (v H?
Example 3.39 (22)* = 234,000

Express numbers as (2.2 X 10')*.
Set hairline to 2.2 on R,.

Read 23.4 on A at hairline.
Answer, 23.4 X 10* = 234,000.

1
Example 3.40 (0.06)* = 0.495.

Operation

1
Express number as (600 X 10-9°,
Set hairline to 600 on A (left half).
Read 4.95 on R, at hairline.

Answer, 4.95 x 101 = 0.495

POWERS OF 6 AND ROOTS OF 3
The R, and R, scales are used with the K scale for finding powers
of 6 and }. The ird power of numbers on the K scale are opposite
the D scale, and the square root {3 power) of numbers on the D scale

1 1
are opposite on an R scale. Symbolically, N = (N3 N® = (N%)z.

Example 3.41 (2)f = 64

Set hairline to 2 on R,;.
Read 64 on K at hairline.

Operation

Operation

SPECIAL POWERS AND ROOTS 51

Example 3.42 (2,000)%' = 3.55

Operation Set hairline to 2,000 on K.

Read 3.55 on R, at hairline.
POWERS OF § AND ROOTS OF 2

The A and K scales are used since the 4rd power of numbers on
the K scale are opposite on the D scale and squares of numbers
on the D scale are opposite on the A scale. Thus, the § power of
numbers on the K scale are opposite on the A scale. Symbolically,

N = ovhye, N = et

Example 3.43 (0.875)% = 0.915

Set hairline to .875 on K.
Read .915 on A at hairline.

Operation

Example 3.44 (18.2)% =178.

Set hairline to 18.2 on A.
Read 78 on K at hairline.

Operation
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CHAPTER 4

OPERATIONS INVOLVING POWERS, ROOTS, EXPONENTIAL
EQUATIONS AND RECIPROCALS USING LOG LOG SCALES.
LOGARITHMS USING LOG SCALE.

The log log scales are exceptionally useful in engineering calcula-
tions which involve powers and roots. As previously explained,
square roots and squares, cube roots and cubes may be found by
using the special scales A, R,, R,, and K. However, any power or
root of a number may be found by using the log log scales. For
numbers close to one, powers and roots are determined in this way
with considerable accuracy.

One important feature of the log log scales is that the decimal
point is always given by the scale reading, so that it is unnecessary
to determine its location by additional calculation. This feature
reduces the chance of error. However, because of frequent changes
in sub-dividing along the scales and because of the extremely wide
range of numbers (from 0.00005 to about 22,000), care must be
used in reading the scales. The sub-dividing should be carefully
checked by eye for that portion of any log log scale being used.
Distances along the log log scales are proportional to log.log,N
where N is any number appearing on a log log scale.

4.1 POWERS AND ROOTS OF NUMBERS

It can be shown mathematically that the scale equation log,,log.N
lends itself to a convenient relationship to other logarithmically
graduated scales on the slide rule for raising numbers to given
powers. Let’s consider the following example to outline scale con-
struction and relationships between them.

53
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It is desired to raise the number N to the P power and obtain the
answer A.

Nr=A
Take the natural log of both sides of the equation.
Log NF = Log A
since:
’ Log N? =P Log N
we have

P log.N = Log.A
Take the common log of both sides of the expression. -

‘ Log, (P Log.N)= Log,Log. A
and since
Log,,(P Log.N) = Log,,P + Log,,Log.N
we have

! Log,,P + Log,,Log.N = Log,log.A

We should recognize the Log, P is the scale length expresswn for
any number P on such scales as D, C or CI. Also, we have noted
that Log,,Log.N is the. scale length expression for any number
N on the LL (Log Log) scales.

Therefore, from the above expression, we see that raising numbers

to powers by using the log log scales is as simple as multiplication.
Now if we wish to raise a number N to the power P to obtain NF,
we must add the log,,P by use of one of the scales on the slide,
either C or CI, to the number N on a log log scale. The answer will
be read on the log log scale.

Example 4.1 (3) = 81

Set hairline to 3 on LI3. ~
Move left index of C to haifline.
Move hairline to 4 on C.

Read 81 at the hairline pn LL3.

In this example (see Figure 4.1}, N co(}"responds to the number 3
and p to the exponent 4. We have added log;,4 to log; log.?, because
" the distance moved by the hairline from the left index to 4 of C
was proportional to log4. The result is logilog.(3)* = log;log.81.
Hence, (3)4 = 81. Other examples follow in this chapter.

Operation

) 3 c 2 3 4 5 6 7 B 9 1
] I 1 1 i 1
LLa ' i l o ! I ’
e 3 4 10 50 81 1000 © 20,000
- SLIDE
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- Iog1u4 R | HAIRLINE

Iogm(logeS)

log s (Ioge§1 )
i

Figure 4.1—LL3 al'ld C Scales for Raising 3 to the 4th Power:

Scale C was used in example 4.1 and shown in Figure 4.1 for its
convenience and clarity only. For greater slide rule efficiency, as
in multiplication, the CI scale is recommended.

POWERS AND ROOTS OF NUMBERS GREATER THAN 1.001

The four log log scales LLO, LL1, LL2, and L.L.3 are used with CI or
C scales in raising numbers greater than 1.001 to a power. If the
log log scales were placed end to end they would form one con-
tinuous scale from 1.001 to 22,026. See Figure 4.2. The log log
scales are in black and read from left to right.

1.001 1.01 1105 2.716 22,026

Y LLO ./\1 LLY /\L LL2 ,/‘. LL3 !
= = — = —

| N/ v/ N

o 0.001 6001 o0.1 ol e 10

Figure 4.2—Log Log Scales LL0O, LL1, LL2, and LL3 Placed End to End.

Reconsidering our problem in Example 4.1, (3)* = 81 after having
moved the left index of C to the hairline, observe the following
readings on the LL3 scale as we move the hairline to various values
on the C scale:

3 =9
(3p5 = 15.6
(32 =212
(3¢ =81

It is evident that as the powers of 3 increase, the hairline is moved
to the right “up the scale,” and readings are made on the LL3 scale.
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Conversely, as powers of 3 decrease, the hairline moves to the left,
“down the scale,” and since the LL scales are continuous, the read-
ings are continued on the LL2 scale after the lower limit of LL3 is
reached. This leads to another important principle. The relationship
of successive scales is that of one-tenth powers of any number on
successive scales. For example, if we set the hairline to 4 on C in
Example 4.1, we observe the following readings on the various LL
scales.

3* =81 (LL3 scale)
304 = 1.552 (LL2 scale)
3004 =1.0449 (LL1 scale)
3094 = 1004405 (LLO scale)

Summarizing, we can establish two working rules.
1. Powers increase when moving “up” the log log scales.
2. Powers increase by tenths when moving “up” successive log
log scales.

“Up” refers to a higher mathematical value and not necessarily to
scale numbers.

Example 4.2 Verify (1.15)*°% = 1.0021 (LLO scale)
(1.15)0¢ = 100815 (LLO scale)
(1.15)* = 1.01835 (LL1 scale)

(115" = 1.0875 (LL1 scale)
(1.15}'* = 115 (LL2 scale)
A(1.16p = 175 (LL2 scale)

(1.15% = 5.0 (LL3 scale)
(1.15y'% =1340.0 (LL3 scale)

Operations Set hairline on 1.15 on LL2.
- Move left index of C to hairline.
Move hairline to 0.015 on C.
Read 1.0021 at hairline on LLO.
Move hairline to 0.058 on C.
Read 1.00814 at hairline on LLO, etc.

Continue verification by moving hairline to power reading on the
C scale and reading the answer on the LL scales. This example
serves to exhibit rule one, that the powers increase as we move
up the LL scales, or as we increase powers, we are moving up the
LL scales.
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Example 4.3 ’Ve'rify (1,11 = 1.00429 (LLO scale)
(1.11)y4 1.0437 (LL1 scale)
(1.11)*! = 1534 (LL2 scale)
{1.11°¢ = 72,0 (LL3 scale)

Operations  Set hairline on 1.11 on the LL2.
Move left index of C to hairline.
Move hairline to 0.041 on C.
Read 1.00429 at hairline on LLO.
Observe hairline set at 0.41 on C.
Read 1.0437 at hairline on LL1.
Observe hairline set at 4.1 on C.
Read 1.534 at hairline on LL2.
Observe hairline set at 41.0 on C.
Read 72.0 at hairline on LL3.

This example serves to exhibit rule two, that powers increase by
tenths as we move up successive LL scales, or as we move up suc-
cessive LL scales, the powers increase by tenths.

We note further that 1) by continuing “up the scale” and 2) by
continuing to increase the magnitude of the power, we extend
beyond the range of the LL scales. Consideration of the solution to
this condition is discussed in this chapter in the section on loga-
rithms using the L scale. ' ’

Example 4.4 (1.00555)"72 = 1.00957

Operations Set hairline at 1.00555 on LLO.
Move 1.72 on CI to hairline.
Move hairline to right index of CI.
At hairline read 1.00957 on LLO.

Example 4.5 (650)°5 = 25.5

Operations Set hairline at 650 on LL3.
Move right index of C to hairline.
‘Move hairline to .5 on C.
Read 25.5 at hairline on LL3.

Example 4.6 (220)°%%52 = 10019

Operations Set hairline on 220 on.LL3.-
Move right index of C to hairline.
Move hairline to 0.000352 on C.
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Turn over slide rule to reverse side.
Read 1.0019 at hairline on LLO.,

Example 4.7 (1.0125)** = 450

Operations Set hairline on 1.0125 on LL1.
Move left index of C to hairline.
Move hairline to 492 on C.
Read 450 at hairline on LL3.

POWERS AND ROOTS OF NUMBERS LESS THAN 0.999

The four reciprocal log log scales LL/0, LL/1, LL/2, and LL/3 are
used with CI or C scales in raising numbers less than 0.999 to a
power. If the reciprocal log log scales were placed end to end, they
would form one continuous scale from approximately 0.000045 to
0.999. See Figure 4.3. The reciprocal log log scales are in red and
read from right to left.

o.:ss 0.990 0.805 0.368 0.000045
L Li/o J’/ \L LL/ J’/ \L LL/2 A LL/3

—— —_— e ) T/ B
| \ / Y3 g !

@7 0.000 e2.01 e-10

Figure 4.3 —Reciprocal Log Log Scales LL/0, LL/1, LL/2, and LL/3
Placed End to End.

As with the log log scales, the reciprocal log log scales have similar
working rules.

1. Powers decrease when moving “up” the reciprocal log log scales.

2. Powers decrease by tenths when moving “up” successive recip-
rocal log log scales.

“Up” refers to a higher mathematical value and not necessarily to
scale numbers.

Example 4.8 Verify (0.876)** = 0.0011 (LL/3 scale)
(0.876)!'5 = 0.218 (LL/3 scale)
(0.876)** = 0.589 (LL/2 scale)
(0.876)Y =0.876 (LL/2 scale)
(0.876)*% =0.9236 (LL/1 scale)
(0.876)*13 = 0.98294 (LL/1 scale)
(0.876)98 = 0.99235 (LL/0 scale)
(0.876)"°% = 0.99802 (LL/0 scale)
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Operations Set hairline on 0.876 on LL/2.
Move left index of C to hairline.
Move hairline to 51.5 on C.
Read 0.0011 at hairline on LL/3.
Move hairline to 11.5 on C.
Read 0.218 at hairline on LL/3, etc.

Continue verification by moving hairline to power reading on the
C scale and reading the answer on the reciprocal LL scales. This
example serves to exhibit rule one, that the powers decrease 8as
we move up the reciprocal LL scales, or as we decrease powers, we
are moving up the reciprocal LL scales.

Example 4.9 Verify (0.272)*' = 0.0048 (LL/3 scale)
(0.272y1 = 0.5862 (LL/2 scale)
(0.272001 = 0.948 (LL/1 scale)
(0.272)0-0%1 = 0.99468 (LL/O scale)

Operations Set hairline on 0.272 on LL/3.
Move left index of C to hairline.
Move hairline to 4.1 on C.
Read 0.0048 at hairline on LL/3.
Observe hairline set at 0.41 on C.
Read 0.5862 at hairline on LL/2.
Observe hairline set at 0.041 on C,
Read 0.948 at hairline on LL/1.
Observe hairline set at 0.0041 on C.
Read 0.99468 at hairline on LL/0.

This example serves to exhibit rule two, that powers decrease by
tenths as we move up the reciprocal LL scales or as we move up
successive reciprocal LL scales, the powers decrease by tenths.

Example 4.10 (0.99646)'%* = 0.99456

Operations  Set hairline at 0.99646 on LL/0.
Move 1.54 on CI to hairline.
Move hairline to right index of CIL
At hairline read 0.99456 on LL/0.

Example 4.11 (0.554)*% = 0.0060

Operations  Set hairline at 0.554 on LL/2.
Move right index of C to hairline.
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Move hairline to 8.65 on C. ’ . 7
At hairline read 0.0060 on LL/3.

Example 4.12 (0.00016)*% = 0.0089

Operations  Set hairline at 0.00016 on LL/3.
Move right index of C to hairline.
Move hairline to 0.54 on C.
At hairline read 0.0089 on LL/3.

Example 4.13 (0.9435)222 = 0.275 .

Operations  Set hairline at 0.9435 on LL/1.
Move right index of C to hairline.
Move hairline to 22.2 on C.
At hairline read 0.275 on LL/3.

RECIPROCALS OF NUMBERS

The log log and reciprocal log log scales are additionally related.
Any number on a log log scale has its reciprocal directly opposite on
the corresponding reciprocal log log scale. Conversely any number
on a reciprocal log log scale has its reciprocal on the corresponding
log log scale.

Example 4.14 Reciprocal of 2 is } or 0.5

Operations  Set hairline on 2 on LL2.
At hairline read 0.5 on LL/2.

Example 4.15 Reciprocal of 0.99738 is 1.00263

Operations  Set hairline on 0.99738 on LL/0.
At hairline read 1.00263 on LLO.

NEGATIVE POWERS AND ROOTS OF NUMBERS
Negative powers of numbers may be obtained by use of reciprocals.

Remembering that N-* = ﬁlfn we may use the operations necessary

to determine NP, then by reading the corresponding reciprocal scale,
N-F is obtained.

Example 4.16 (25)°¢7 = 0,116

Operations  Set hairline at 25 on LL3.
Move right index of C to hairline.
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Move hairline to 0.67 on C.
Read 0.116 at hairline on LL/3.

Observe that the hairline is set to also read (25)57 on the LL3 scale.
Example 4.17 (0.985)372 = 1.755

Operations  Set hairline on 0.985 on LL/3.
Move right index of C to hairline.
Move hairline to 37.2 on C.
Read 1.755 at hairline on LL2.

Observe that the hairline is set to also read (0.985572 on the LL/2
scale. s‘.ﬂc

Exercise 4.1
Powers and Roots of Numbers Greater Than 1.001 and Less Than 0.999,
Reciprocals and Negative Powers and Roots of Numbers.

Determine the following powers or roots of numbers.

1. 1.01543%8 8. 1.0247'3 15. 1.1642%

2. 1002613 9. 296%™ 16. 1.123501

3. 2.4530™ 10. 1.0633"% 17. 1.0071°3

4. 0.9985%™ 11. 0.9816"" 18. 0.875%%

5. 0.868"17 E 0114“303 19. 0.9812117

6. 0.301%0168 13. 1.00164%2 20. 1.04486%3

7. 0.922%1 ' 14. 0.568%! 21. 0.11402%2
Find the reciprocals of the following numbers, T
22. 1.0248 25. 1.1503 28. 245
23. 1.00347 26. (.99438 29. 0.998515

24. 0.9529 27. 0.8035 30. 0.00305
Determine the following ziegative powers or roots of numbers.
31. 41507 34. 1.31732 37. 0.8773%5

32. 0.99245 12 35-“;_2-2“"33 38. 1.074570%
33. 1.0063-0% 36. 0.8412 39. 1070083
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4.2 POWERS AND ROOTS OF e

Since e appears as the left index of the LL3 scale, also the right
index of the LL2 scale, all numbers on the log log and reciprocal
log log represent powers of e. Also, since all of the log log scales are
located on the body of the rule and are used with the D scale, the
powers are read by simply setting the hairline. If x represents a
number to which the hairline is set on the D scale, values of e*
appear at the hairline on the log log scales. LLO, LL1, LL2, and
LL3 are used for positive powers of e; whereas LL/0, LL/1, LL/2,
and LL/3 are used for negative powers of e. To aid the operator in
remembering this relationship, the symbol x appears at the left
end of the D scale, the symbol e* at the left end of the LL scales,
and e* at the left end of the reciprocal log log scales.

Additional aid in reading powers of e on the log log and reciprocal
log log scales is provided in the scale instruction symbols opposite
the right ends of the scales. The scale instruction symbols indicates
the range of x in e* or e™* covered by each scale. The arrows indicate
.the direction of scale numberings.

POSITIVE POWERS AND ROOTS OF e

The four log log scales LLO, LL1, LL2, and LL3 are used with the
D scale to raise e to a positive power or root. A direct one step pro-
cedure is all that is needed. Since e appears as an index of the LL3
scale, we merely set the hairline on the value of x on the D scale
and read the answer on the appropriate log log scale. 1t should be
noted that since e is the left index of LL3, it follows that the left
index of LL2 is '; LL1 is €' and LLO is e**'. Refer to Figure 4.2.

Example 4.18 e'** = 4.22

Operations  Move hairline to 1.44 on D.
Select appropriate scale as indicated
by scale instruction symbols at right.
Read 4.22 at hairline on LL3.

Example 4.19 ¢%%%23 = 1,00625

Operations  Move hairline to 0.00623 on D.
Select appropriate scale as indicated

by scale instruction symbols at right.
Read 1.00625 at hairline on LLO.
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NEGATIVE POWERS AND ROOTS OF e

The four reciprocal log log scales LL/0, LL/1, LL/2, and LL/3 are
used with the D scale to raise e to a negative power or root. Again,
only a direct one step procedure is needed. The right index of LL/0
ise % L1/1ise "', LL/2 ise ! and LL/3 is e7'*. Refer to Figure 4.3.

Example 4.20 e 4 = 0.237

Operations  Move hairline to 1.44 on D.
Select appropriate scale as indicated
by scale instruction symbol at right.
Read 0.237 at hairline on LL/3.

Example 4.21 ¢ %% = (.99378

Operations  Move hairline to 0.00623 on D.
Select appropriate scale as indicated

by scale instruction symbol at right.
Read 0.99378 at hairline on LL/0.

Exercise 4.2
POWERS AND ROOTS OF e

1. 204 5. et204 g, gl-0204
9. ghonzod 6. e 2.0 10. e—0-204
3. e v-0204 7. @—0-00204 11. e 3

4. e—O.ﬁGs 8. e—0.0352 12_ 37(].0332

4.3 SPECIALIZED OPERATIONS USING LOG LOG SCALES

The Log Log scales are so constructed that they conveniently lend
themselves to other specialized mathematical operations. These
computations are somewhat typical of problems found in engineer-
ing and mathematics. They will serve as a useful reference and
operational tool to both engineer and mathematicians.

EXPONENTIAL EQUATIONS
Equations of the form N*= A  in which N and A are known quanti-
ties, may be solved for the unknown exponent p. The problem may
be stated thus; to what exponent p must N be raised so that the
result is A? Steps in the process may be described as follows:

1. Set the hairline to the number N on a log log scale,
2. Set an index of C to the hairline,
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3. Move the hairline to the number A on a log log scale,
4. Read the exponent p on C.

This process is the reverse of that used for determining powers of
numbers.

Example 4.22 (255 =175

Operations  Set hairline to 25.5 on LL3.
Move right index of C to hairline.
Move hairline to 17.5 on LL3.
At hairline read p= 0.884 on C.

Example 4.23 (2.4)» = 185

Operations  Set hairline to 2.4 on LL2.
Move right index of C to hairline.
Move hairline to 185 on LL3.
At hairline read p= 5.96 on C.

Example 4.24 ef = 7.7

Operations  Set hairline to 7.7 on LL3.

Observe range of scale instruction symbol.
At hairline read p= 2.04 on D.

HYPERBOLIC FUNCTIONS

Certain combinations of powers of e, which occur frequently in
engineering and applied mathematics, are known as hyperbolic
functions. The three hyperbolic functions most commonly used are
defined as follows:

hyperbolic sine of x: sinh x =% (e* — e™¥)

hyperbolic cosine of x: cosh x =—;— (e*+e™)

sinhx e*—1
coshx e*™+1

hyperbolic tangent of x: tanh x =

The hyperbolic functions may be determined by substituting the

powers of e read from the log log and reciprocal log log scales.
For example: ’
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sinh 0.434 = % (gl 43¢ g=0:434) =% (1.544 — 0.648) = 0.448

cosh 0.434 = % (e"43 + g 0434) = % (1.544 + 0.648) = 1.096

e _ 1 2382—1 1.382

ST 5380+ 1 3382 0408

tanh 0.434 =

It should be noted that, once the sinh and cosh have been found,
the tanh may be found by the expression, tanh x == %. Valués
e* = ¥ = 1 544 and e* = e %#* = (.648 were taken from the LL2
and LL/2 scales by only a single setting of the hairline to 0.434 on
the D scale; e?* = %58 = 2,382 was read on LL.2 with the hairline
set at 0.868 on the D scale.

The inverse of the hyperbolic functions may also be evaluated by
use of the log log scales. If the value of a hyperbolic function such
as sinh x, cosh x, or tanh x is given or known, the value of x may
then be found by substituting the known value into the formulas
given below, in which A, B or C are known:

Ifsinh x= A, thene*= A+ VA + 1.
Ifcosh x=B, thene*=B+ VB*— 1.

If tanh x = C, then e* = et C.
’ 1-C
The recommended procedure is to first substitute the known values
into the formulas, thus selving for e¢*. (The R, and R, scales are
extremely convenient for this work.) Then set the hairline to e* on
the appropriate log log scale and read x at the hairline on the D
scale. For example, if sinh x is given as 2.12, x may be evaluated as
follows: since A = 2.12, A+ VA*+1=212+ V4.50+ 1= 4.46.
Now set the hairline to 4.46 on LL3, and read x = 1.496 at the
hairline on D.

LOGARITHMS TO ANY BASE
The log log scales are so constructed that logarithms to any base
may easily be determined. By this method complete logarithms
including both characteristic and mantissa are obtained directly.
Let a number "a” represent the base of logarithms which is to be
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used. Mathematically then, a° = N or p=log,N, where the exponent

or logarithm p is to be determined for number N to the base "a”.
Taking logarithms of both sides to the base e, we obtain p log.a

= logefl;or p= %. The numerator log,N is determined by setting

e

the hairline to the number N on a log log scale, the numerator then
appearing directly opposite on the D scale. The denominator appears
directly opposite the base “a” set on a log log scale. To obtain p the

iog.N is simply divided by log.a.

As an example, in the expression log,, 9.1, the base a= 10. Setting
the hairline to 10 on LL3, the right index of C is set to the hairline.
The hairline is then moved to 9.1 on LL3 and log,, 9.1 = 0.959 is
read at the hairline on C.

Log;, 800 may be determined as follows: with left index of C aligned
with 10 on LL3, move the hairline to 800 on the LL3 and read 2.903
at the hairline on C. Since the characteristic must be 2, the complete
logarithm to the base 10 is 2.903.

If many computations of the above type are to be made, it may be
advantageous to remove the slide and to reinsert it reversed. Then
use the CF scale instead of the C scale. This will eliminate the
possibility of being “off scale”, without having to turn the rule
over during the computations.

To obtain logarithms, for example, to the base 8, we may set the
index of CF opposite 8 on LL3. Moving the hairline to a number
on an LL scale, its logarithm to the base 8 is read at the hairline
on CF. For example log, 200 = 2.55.

The log log scales are especially useful for determining the values
of logarithms to the base e (natural logarithms). The natural
logarithm of a number is readily found by merely setting the hair-
line to the number on the log log scale and reading the logarithm to
the base e on the D scale. For example, the log 7.7 is found by simply
moving the hairline to 7.7 on the LL3 scale and read the natural
log of 2.04 on the D scale.
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Exercise 4.3
Exponential Equations, Hyperbolic Functions and Logarithms to Any Base
Solve for the exponent p in the following equations:

1. (9.1»=16.4 3. (0.915p = 0.614

2. (3.25pr=1T15 4. (0.425» = 0.0174
Determine the values of the following hyperbolic functions:

5. sinh 0.2 8. tanh 0.35 .

6. sinh 3.0 9, tanh 2.1 R

7. cosh 0.45

Evaluate x, given the following values of the hype.rbolic functions:
10. sinh x = 9.82 13. cosh x = 1.32

11. sinh x = (0.625 14. tanh x = 0.917

12. cosh x = 3.73 15. tanh x = 0.300

Determine the logarithm of the following:

16. log.1.0242 18. log,160

17. log,,61.8 19. log.270

4.4 LOGARITHMS, ANTILOGARITHMS, POWERS AND
ROOTS USING THE L SCALE

The uniformly divided L scale serves as a simple table of common
logarithms. The antilogarithms may be found by reversing the
procedure. The L scale also provides a means of determining the
powers of numbers which fall outside the range of the LL scales.

COMMON LOGARITHMS

Common logarithms (logarithms to the base 10) may be found
directly by use of the L scale. If the hairline is set to a number on
the D scale, the mantissa of the common logarithm of the number
may be read on the L scale. Both D and L scales are located on the
body of the rule, hence no slide movement is required. The char-
acteristic of the logarithm must be determined mentally, keeping
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in mind that log,,1 is zero, log,,10 is 1, log,,100 is 2, etc. Any
number between 1 and 10 will therefore have a characteristic of 0,
and any number between 10 and 100 will have a characteristic

of 1, etc.

Example 4.25 log,,79.8 = 1.902

Operations  Set hairline at 79.8 on D.
At hairline read mantissa .902 on L.
Introduce characteristic 1.902

Example 4.26 log,,0.00207 = 3.316

Operations  Set hairline at 0.00207 on D.
At hairline read mantissa .316 on L.
Introduce characteristic 3.316

ANTILOGARITHMS
Finding the antilogarithms is just the reverse of finding a logarithm,
that is, given log,N, we must find N. Thus “antilogarithm N”
means the number whose logarithm is N.

Example 4.27 Antilogarithm 2.086 = 121.9

Operations  Set hairline at mantissa 0.086 on L.
At hairline read 1219 on D.
Consider characteristic 121.9

Example 4.28 Antilogarithm 1.835 = 0.684

Operations  Set hairline at mantissa 0.835 on L.
At hairline read 684 on D.
Consider characteristic 0.684

POWERS AND ROOTS

The L scale serves as a simple table of common logarithms to
determine powers and roots of numbers which fall outside the
range of the LL scales. In the expression, A = NP, we can operate
as follows:

A=Nr
then log,,A = P log, N
A = antilogarithm (P log,,N)

L SCALE

Example 4.29 1.0742% = 1 585,000

Operations  Set hairline at 1.074 on D.
At hairline read mantissa .031 on L.
Introduce characteristic 0.031.
Multiply 200 x 0.031 = 6.2.
Set hairline at mantissa 0.2 on L.
At hairline read 1585 on D.
Consider characteristic 1,585,000,

Exercise 4.4
Logarithms, Antilogarithms, Powers and Roots Using the L Scale

Determine the common logarithms of the following:
1. Iog,,,12.6 3. log,,0.0312 5. log,,1.675
2. log,,61.8 4. log,, 1894 6. log,,0.815
Determine the common antilogarithm of the following:
7. antilog 2.047 9. antilog 0.865 11. antilog 3.214
8. antilog 1.835  10. antilog 1.391  12. antilog 1.281
Determine the values of the following:
13. (1.055)y™ 14. (35.4) 15. (0.000025)*
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CHAPTER 5

TRIGONOMETRIC OPERATIONS

Finding trigonometric functions on the VERSALOG 1I is a direct
and rather simple process. The angles are read on the TT, Sec T SRT
or Cos S scales. Their respective functions may be read at the
hairline on C or CI scales. The angles on the trigonometric scales
of the VERSALOG Il slide rule are expressed ir: degrees and decimal
parts of a degree, conforming to modern practice.

5.1 TRIGONOMETRIC FUNCTIONS

There are six basic trigonometric functions, or relations between
the sides of a right triangle. Each angular function is expressed
as the ratio of a particular pair of sides of the triangle. These six
ratios are the sine, cosine, tangent, cosecant, secant, and cotangent
of an angle, and are stated for convenient reference.

Figure 5.1 —The Right Triangle.

Referring to Figure 5.1, the six basic trigonometric functions

may be written as:

_ opposite side 1
hypotenuse  cosec A

sine A=sin A=

2
c
cosine A= cos A= l_: _ adjacentside 1

hypotenuse = sec A

a_ opposite side 1
b adjacentside cot A

tangent A=tan A =

¢ _ hypotenuse 1

cosecant A = csc A= a opposite side sin A

71
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hypotenuse _ 1
adjacent side cos A

l

secant A=sgec A=

_ adjacentside 1
opposite side tan A

ol oTle

cotangent A= cot A=

Note the reciprocal nature between the first and last three functions.
The first set of three (sine, cosine, and tangent) find the most
frequent application and are most commeonly used by engineers.
Consequently scales for finding values of these functions for any
given angle are found on the slide rule. Should the other ratios
(cotangent, secant, cosecant) be required, they may be obtained
through the use of a convenient reciprocal scale.

5.2 THE TRIGONOMETRIC SCALES
The three trigonometric scales are located on the slide and are

designated Cos S, Sec T SRT, and TT. Each set of graduations is

actually two scales in one; for each is numbered in two directions
(left to right, and right to left). The angular values at the left
of the graduations increase toward the right (left to right). Likewise,
the angular values at the right of the graduations increase toward
the left (right to left).

COLOR CODING

The unique color coding system used on the trigonometric scales
is consistent and compatible with all of the other scales on the
VERSALOG II. It is easiest to learn for beginners, and helps
experienced users to avoid errors, and speeds calculations.

Black Scales: The black T, SRT and S trigonometric scales have
angles numbered in black and read from left to
right. These scales can be thought of and used
basieally like a C scale.

Red Scales: The red T and Sec T trigonometric scales have
angles numbered in red and read from right to left.
These scales can be thought of and used basically
like a CI scale.

Green Scale: The Cos trigonometric scale has angles numbered
in green and read from right to left and should be
thought of and used basically like a C scale. The
Cos scale is unique in its color ceding in that it
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is the only green scale on the VERSALOG II.
This coding has been adopted for values of the
cosine angles so that they can be more readily
distinguished from the sine angles on the same
scale. Also, although the angles are read from right
to left, the corresponding cosine functions are
similar to the C scale and read from left to right.

Summarizing the above observations, it can be stated:
Angles are numbered in black or green when the scale is to
be used like a C scale.

Angles are numbered in red when the scale is to be used
like a CI scale.

The fundamental nature of these scales makes their use quite as
simple as the C and CI scale.

SCALE INSTRUCTIONAL SYMBOLS

Located at the right end of each trigonometric scale are a pair of
scale instructional symbols. These symbols are very helpful in
placing the decimal point of the trigonometric functions. The
related angular values of the trigonometric function and the scale
symbols are summarized in the following table.

Symbol: Decimal Trigonometric Angular
Scale Point Range Function Range
TT { 0.1 — 1.0 (Black) tangent 5.7° to 45°
10.0 ~—1.0 (Red) tangent 45° to B4.3°
0.01-0.1 (Black) sine or tangent  0.57° to 5.74°
Bl SRT{loo.o —-10.0 (Red)  sec or tangent  84.26° to 89.43°
Cos S { 0.1 —1.0 (Black) sine 5.7° to 9P
08 0.1+ 1.0 (Green) cosine 0 to 84.3°

The ranges of values in the above table should be memorized.
A review of this section may be desirable before continuing to the
next. With the use of the VERSALOG II, note particularly the color
coding, numerical placement, direction of scale numbering, and
the ranges of the scales as summarized above.

5.3 THE SINE FUNCTION OF ANGLES FROM 0° TO 90°

The sine functions of angles from 0° to 90° are found by the use of
three different scales. The R values of the Sec T SRT scale are used
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for extremely small angles. The S values of the Sec T SRT scale are
used for angles between 0.57° and 5.74°. For angles between 5.7°
and 90°, the S values of the Cos S scale are used.

SINE 0° TO 0.574° (Using R of Sec T SRT Scale)
The sine of extremely small angles is approximately equal to the
size of the angle expressed in radians. Radian values of any angle
may be read directly on the C scale by setting the hairline to
magnitude of the angle on the Sec T SRT scale (hereafter referred
to the radian scale). The decimal point can be placed mentally.

57.3° =1 radian (approximately)
5.7 = 0.1 radian (approximately)
0.57° = 0.01 radian (approximately)
0.057° = 0.001 radians (approximately) etc.

Therefore, we can allow the radian scale to be read in any decimal
multiple of the angle shown to obtain the equivalent radian value.
For angles from 0° to 0.57° the radian value will be approximately
equal to the value of the sine function.

Example 5.1 Find the sine of the angles 0.41°, .041°, and .0041°.

Operations Set hairline on 4.1° on the radian scale.
For 0.41° read 0.00715 radian on C,
sin 0.41° = 0.00715.
For 0.041° read 0.000715 radian on C,
sin 0.041° = 0.000715.
For 0.0041° read 0.0000715 radian on C,
sin 0.0041° = 0.0000715.

SINE 0.574° TO 5.74° {Using S of Sec T SRT Scale)
To find the sine of an angle from 0.574° to 5.74°, the Sec T SRT scale
is used with the C scale. The desired angle is set on the S scale
(black) and the sine function will be found on the C scale. The
decimal range can be found at the right hand scale instruction
symbol, (0.01 — 0.1).

Example 5.2 Find sin 2.14° = 0.0374

Operations Opposite 2.14° on S (black) of Sec T SRT read 0.0374
on C.
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SINE 5.74° TO 90° (Using S of Cos § Scale)

To find the sine of an angle from 5.74° to 90°, the Cos S scale is used
with the C scale. The desired angle is set on the S scale (black) and
the sine function is read on the C scale. The decimal range can be
found at the right hand scale instruction symbol, (0.1 — 1.0).

Example 5.3 Find sin 32° = 0.530
Operations Opposite 32° on S (black) of Cos S read 0.530 on C.

It follows that the angle value can be found if the sine function
value is known. Merely set the sine value on the C scale and read
the angular value on the radian, on Sec T SRT or on Cos S scale,
the choice being made depending upon the decimal point location.

Exercise 5.3
The Sine Functions of Angles from 0° to 90°
Find the sine values of the following angles:

1. Sin 34.5° 6. Sin 5.3° 11. Sin 33° 15’
2. 8in 0.3° 7. Bin 8.5° 12. Sin 60°

3. Sin 1.2° 8. Sin 13° 40’ 13. Sin 0.25°
4. Sin 12.4° 9. Sin 20° 30’ 14. Sin 80°

5. Sin 2° 50’ 10. Sin 25° 50 15, Sin 3.5°

Find the angle values of the following sine functions:
16.Sin__=0.0160 20.Sin__=0.104 24.Sin__ =0.852
17.8in__=0.0320  21.Sin_=0231 25.Sin_ =0.902
18. Sin__ =0.000291 22.Sin___ =0.358 26.Sin___ =0.020
19. 8in__=0.00450 23.Sin__ =0.759 27. 8in__ = 0.000582

5.4 THE COSINE FUNCTION OF ANGLES FROM 0° TO 90°

The cosine function of angles from 0° to 90° are found by the use of
three different scales. For angles between (° and 84.26° the Cos
values of the Cos S scale are used. The complement of the angle
is read as S values of the Sec T SRT scale is used for angles between
84.26° and 89.4°. The complement of the angle is read as the R
values of the Sec T SRT scale is used for angles between 89.4°
and 9¢°. '

COSINE 0° TO 84.26° (Using Cos of Cos S Scale)

The cosine of angles from 0° to 84.26° are found on the C scale
opposite the angle setting on the Cos scale (green). The decimal
range is found at the right hand scale instruction symbol, (0.1 < 1.0)
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Example 5.4 Find Cos 23.5° = 0.917

Operation  Opposite 23.5 on Cos (green) of Cos S read 0.917
on C.

COSINE 84.26° TO 89.43° (Using S of Sec T SRT Scale)
The cosine of angles from 84.26° to 89.43° are found on the C scale
opposite the complement of the angle setting on the S values of
the Sec T SRT scale. The cosine of an angle is equal to the sine of
its complement. For this range of angles, determine the complement
of the angle and find the value of the sine of this angle as described
in Section 5.3.

Example 5.5 Find Cos 86.5° = 0.061

Operation  Opposite 3.5° (the complement of 86.5°) on S (black)
of Sec T SRT read 0.061 on C.

COSINE 89.43° TO 90° (Using R of Sec T SRT Scale}

The cosine of angles from 89.43° to 90° are found on the C scale
opposite the complement of the angle setting on R (radian) values
of the Sec T SRT scale. As stated before, the cosine of the angle is
equal to the sine of its complement. The complement of this range
of angles is the sine of extremely small angles. Since the sine of
extremely small angles is approximately equal to the size of the
angle expressed in radians, the cosines are found as described in
Section 5.3.

Example 5.6 Find Cos 89.6° = 0.00698

Operation  Opposite 0.4° (the complement of 89.6°) on R of
Sec T SRT scale read 0.00698 on C.

The angle value can be found if the cosine function value is known.
Merely set the cosine value on the C scale and read the angular
value on the radian, on Sec T SRT or on Cos S scale, the choice
being made depending upon the location of the decimal point.

TANGENT FUNCTIONS

Exercise 5.4
The Cosine Function of Angles from 0° to $0°
Find the cosine values of the following angles:

1. Cos 34.5° 6. Cos 6.4° 11. Cos 46.5°

2. Cos 0.4° 7. Cos 8.4° 12. Cos 60°

3. Cos 1.4° 8. Cos 12° 42’ 13. Cos 80°

4. Cos 13.5° 9. Cos 20° 30’ 14. Cos 87.5°

5. Cos 2° 48’ 10. Cos 24° 36’ 15. Cos 80° 18’
Find the angle values of the following cosine functions:
16. Cos __=0.052 20. Cos__ =0.809 24. Cos _ = 0.00200
17. Cos __ =0.201 21. Cos __=0913 25. Cos = (.00350
18. Cos __ = 0400 22. Cos___ =0200 26. Cos __ = 0.800
19. Cos ___ =0.588 23. Cos __ =0.020 27. Cos __ = 0.900

5.5 THE TANGENT FUNCTION OF ANGLES FROM 0° TO 90°

The tangent function of angles from (¥ to 90° are found by the use
of five different scales. The radian scale is used to find tangent
functions of extremely small angles and angles extremely close
to 90°. The red and black T values of the Sec T SRT scale are used
to find tangent functions of angles between 0.574° and 5.74° as well
as those between 84.27° and 89.43°. All remaining tangent functions
of angles between 5.74° and 84.27° are found by using the TT scale.
Each scale and technique is described in detail below.

TANGENT 0° TO 0.574° (Using R of Sec T SRY Scale)

The technique for finding tangent of angles between 0° and 0.574°
is the same as described in Section 5.3, since the tangent and sine
of extremely small angles are considered equal. The tangent is
approximately equal to the size of the angle expressed in radians.

Example 5.7 Find tan 0.5° = 0.00872

Opposite 0.5° on R of Sec T SRT scale read 0.00872
on C.

Operation

TANGENT 0.574° TO 5.74° (Using T (black) of Sec T SRT)
To find the tangent of an angle from 0.574° to 5.74°, the Sec T SRT
scale is used with the C scale. The desired angle is set on the
T (black) scale and the tangent is read directly opposite on the
C scale. The decimal range can be found at the right hand scale
instruction symbol, (0.01 — 0.1).

77
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Example 5.8 Find tan 3°= .0524

Operation Opposite 3° on T (black) of Sec T SRT scale read
0.0524 on C.

TANGENT 5.74° TO 45° (Using T (black) of TT Scale)

To find the tangent of an angle from 5.74° to 45°, the TT scale is
used with the C scale. The desired angle is set on the T (black) scale
and the tangent is read directly opposite on the C scale. The decimal
range can be found at the right hand scale instruction symbol,
(0.1 — 1.0).

Example 5.9 Find tan 16.9° = 0.304

Operation Opposite 16.9° on T (black) of TT scale read 0.304
on C.

TANGENT 45° TO 84.27° (Using T (red) of TT Scale)
To find the tangent of an angle from 45° to 84.27°, the TT scale is
used with the CI scale. The desired angle is set on the T (red) scale
and the tangent is read directly opposite on the CI scale. The
decimal range can be found at the right hand scale instruction
symbol, (10.0 < 1.0).

Example 5.10 Find tan 75° = 3.73
Operation Opposite 75° on T (red) of TT scale read 3.73 on CI.

TANGENT 84.27° TO 89.43° (Using T (red) of Sec T SRT)
To find the tangent of an angle from 84.27° to 89.43°, the Sec T SRT
scale is used with the CI scale. The desired angle is set on T (red)
scale and the tangent is read directly opposite on the CI scale. The

decimal range can be found at the right hand scale instruction
symbol, (100.0 < 10.0).

Exampie 5.11 Find tan 8%° = 57.3

Operation Opposite 89 on T (red) of Sec T SRT scale read
57.3 on CL

TANGENT 89.43° TO 90° (Using R of Sec T SRT)

To find the tangent of an angle from 89.43° to 90°, the Sec T SRT
scale is used with the CI scale. For this range of angles use the

1 Ay The expression sin (90° — A) is

formula tan A = W
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merely the sine of the complement of our desired angle. Since the
complement angle is extremely small, we can use the angle
expressed in radians. The CI scale is the reciprocal of the C scale
and will give values of the tangent of angles between 89.43° to 90°.

Example 5.12 Find tan 89.5° = 114.8

Operation Opposite 0.5° (the complement of 89.5°) on the
R of Sec T SRT scale read 114.8 on CI.

The angle values can be found if the tangent function is known.
Set the tangent function on the C or CI scale, whichever applies,
and read the angular value on the radian, Sec T SRT or TT scale,
the choice being made depending upon the decimal point location.

Exercise 5.5
The Tangent Function of Angles from 0° to 90°

Find the tangent values of the following angles:

1. tan 43.5° 6. tan 17° 54’ 11. tan 84.5°
2. tan 0.2° 7. tan 23.2° 12. tan 89°
3. tan 1.6° 8. tan 42° 30’ 13. tan 30’
4. tan 4.3° 9. tan 48° 14. tan 1° 24’
5. tan 6° 24’ 10. tan 64° 15. tan 44.7°

Find the angle values of the following tangent functions:
16. tan __ =0.00873 20. tan___=0.121 24. tan__ =573
17. tan  =0.0349 21. tan =0.784 25. tan =143

18. tan __=0.000291 22. tan__ =1.170 26. tan__ =0.00349
19. tan___=0.0750  23. tan___=3.73 27 tan__ =0.102

5.6 THE SECANT, COSECANT, AND COTANGENT FUNCTIONS

OF ANGLES
Although secants of angles from 84.27° to 89.43° may be read from
the Sec (red) of the Sec T SRT scale. The following relationships

lead to a more general method for finding secant, cosecant, and
cotangent of an angle.

since: sec A = L, solve for cos A on C, read sec A on CL
cos A

since: csc A= .;,iWI%K’ solve for sin A on C, read ¢sc A on CL
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since: cot A = Eﬁ%_A’ solve for tan A on C or CI, read tan A on

CI or C respectively.

Care must be exercised in locating the decimal point for the
reciprocal functions.

5.7 SMALL ANGLES EXPRESSED IN MINUTES OR SECONDS

Special marks on the Sec T SRT scale simplify the process of finding
sines and tangents of small angles when they are expressed in
minutes or seconds, or of converting these angles to radian measure.
The operations are based on the fact, previously discussed, that the
sine, tangent, and radian measure of small angles are approxi-
mately equal. Since one minute equals approximately 1/3436
radians, we merely divide the number of minutes by 3436 to obtain
the sine, tangent, and radian measure of the angle. To facilitate
this division, a small dot is placed on the Sec T SRT scale opposite
3436 on the C scale.

Example 5.13 Convert 49.2' into radians = 0.0143

Move the hairline to 49.2" on D.
Set simple dot (on Sec T SRT) at hairline.
Read 0.0143 radians at left index of C.

Operation

To convert an angle expressed in seconds to radian measure, a
similar mark, but with two dots, is placed on the Sec T SRT scale
opposite 206 on the C scale. This is because one second is approxi-
mately equal to 1/206,240 radians.

Example 5.14 Conver 29" to radians = 0.0001406

Move hairline to 29" on D.
Set double dot (on Sec T SRT) at hairline.
Read .0001406 radians at left index of C.

Operation
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In placing the decimal points in examples 5.13 and 5.14, it is helpful
to recall that one minute equals 0.000291 radians, and one second
equals 0.00000485 radians.

5.8 ANGLES IN RADIANS

In addition to the direct reading radian scale of Sec T SRT, angles
in radians may be converted to degrees and vice versa_ by use of a

multiplication factor. Since one radian is equal to % = 57.3°, the

angle in radians multiplied by 57.3 equals the angle in degrees.
For convenience, a graduation designated r has been placed at this
point on the C and D scales on one face of the rule.

Example 5.15 Convert to degrees; 0.53, 2.19 and 1.43 radians.

Set right index of C to r on D.
Move hairline to 0.53 on C.
Read 30.4° on D at hairline.
Move hairline to 2.19 on C.
Read 125.5° on D at hairline.
Move hairline to 1.43 on CF.
Read 82° on DF at hairline.

Operation

Example 5.16 Convert to radians; 30.4°, 125.5°, an 82°.

Set r on C to right index of D.
Move hairline to 30.4° on C.
Read 0.53 on D at hairline.
Move hairline to 125.5° on C.
Read 2.19 on D at hairline.
Move hairline to 82° on CF.
Read 1.43 on DF at hairline.

Operation
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The following table is a summary of the above sections on the
trigonometric functions and should serve as a useful reference.

Trigonometric Angle Function
Angle Range Function Read On Read On Comments
" Sine SecTSRT c Radians
Cosine Cos 8 C Direct
0.574°
Tangent SecTSRT C Radians
Sine SecTSRT C Direct
0.574°
to Cosine Cos S C Direct
5. 74
Tangent SecTSRT C Direct
Sine Cos S C Direct
5.74°
to - Cosine Cos 8 C Direct
Tangent T T C Direct.
45 Sine Cos S C Direct
to Cosine C Di
84.27° e B e
Tangent TT CI Direct
Sine Cos S C Direct
84.27°
to Cosine SecTSRT C Use Compliment
89.43°
Tangent SecTSRT CI Direct
Sine Cos 8 Direct
89.43°
to Cosine SecTSRT C Use Compliment
90°
1
Tangent SecTSRT CI Usem
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5.9 COMBINED OPERATIONS WITH THE TRIGONOMETRIC SCALES

Calculations involving products and quotients of trigonometric
functions may be performed by using the trigonometric scales with-
out actually reading the functions from the C or CI scales. It is
only necessary to remember to use any scale as a C scale when the
angles are numbered black or green and as a CI scale when the
angles are numbered red. Examples of this type of computation

follow:

Example 5.17 9.2 sin 43° cos 70.46° = 2.10

Set right index of C at 9.2 on D.
Move hairline to 43° on S.

Set right index of C to hairline.
Move hairline to 70.46° on Cos.

Read 2.10 on D at hairline.

Operations

Example 5.18 10.1 tan 18.5° tan 48° = 3.75

Set left index of C at 10.1 on D.
Move hairline to 18.5°on T.

Move 48° on T to hairline.

Read 3.75 on D at right index of C.

Operations

12.8 tan 19° sin 47°
cos 25° tan 32°

Set left index of C at 12.8 on D.
Move hairline to 19°on T.

Set right index of C to hairline.
Move hairline to 47° on 8.

Move 25° on Cos to hairline.

Move hairline to right index of C.
Move 32° on T to hairline.

Read 5.69 on D at right index of C.

= 5.69

Example 5.19

Operations
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Exercise 5.9
Combined Operations with the Trigonometric Scales

Solve the following expressions:

i 28 sin 40°
. 14 sin 28° 28 sin 40°
1 sin =
o 64.5
2. 2.5 tan 43 8. 048
5 18 5 i G .
" cos 65° 9. 18 sin 28° cos 42.5
4. 2.7 cos 20° 10. 16-COS 50°
sin 24°
5. 4.2 cot 27° 11, 34 sin 30° sin 65°
sin 85°
27 sin 30° gin 45° 14 tan 34° sin 60°
6. B e
2 sin 30

5.10 SOLUTION OF TRIANGLES

Many practical problems involving the trigonometric functions are
efficiently and rapidly caleulated with a slide rule. In this section,
a number of typical trigonometric applications involving right
triangles and oblique triangles are illustrated. A familiarity of
the trigonometric functions defined in Section 5.1 and a thorough
understanding of the numerical ranges of the trigonometric scales
as shown in the table in Section 5.2 is essential.

RIGHT TRIANGLES

Example 5.20 Find the length of the
hypotenuse (side ¢) of
the triangle in Figure 5.2.
300/

Operations  sin 58° = B

Figure 5.2.
Set hairline to 300’ on D.
Move 58° on 8 to hairline.
Read ¢, 354’ on D at right index of C.

Example 5.21 Solve the triangle in
Figure 5.3 for A, B, and a.

Operations
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B
. _ 233" _
sin B = o6  C08 A
csinA=a

Set right index of C to 9.6" on D. 06" a
Move hairline to 2.33" on D.

Read B = 14.05° on S at hairline. c
Read A = 75.95° on Cos at hairline.
Move hairline to 75.95° on 8. a8 de
Read 9.3" on D at hairline. 2.33
Figure 5.3.
B

Example 5.22 Solve the triangle in

Operations

Figure 5.4 for a, b, and B 12
a=csin A

b=ccos A " A e
B=90"— A

Set left index of C to 12 on D. Figure 5.4.

Move hairline to 43° on S.
Read a = 8.18 on D at hairline.
Move hairline to 43° on Cos.
Read b = 8.76 on D at hairline.
B=90°—A=90°—43"=47".

B
Example 5.23 Solve the triangle in
Figure 5.5 for A, B, and c
c a|36.4

Operations Tan A= 2%%

B=90°"—A A T c

_ 364 )
c= . — Figure 5.5.

Set right index of C to 62.1 on D.

Move hairline to 36.4 on D.

Read A = 30.4° on T (black} at hairline.
Read B = 59.6° on T (red) at hairline.
Move 30.4° on S to hairline.

Read c = 72 on D at right index of C.
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A
b € 74
Example 5.24 Solve the triangle in a {271 i
Figure 5.6 for A, c
a, and b Figure 5.6.

Operations  Applying the law of sines, which may be
a b _ ¢
sinA sinB sinC’
solve as a proportion.
a b T4
sin (90° — 27°)  sin 27°  sin 90°
Set hairline to 71.4’' on D.
Move 90° on S to hairline.
Move hairline to A, 63° (90° — 27°) on S.
Read a = 63.6' on D at hairline.
Move hairline to 27° on S.
Read b = 32.4’ on D at hairline.

written

OBLIQUE TRIANGLES

The two basic formulas for the solution of oblique triangles are
the law of sines, as previously stated in example 5.24

a __ b _ ¢
sinA sinB sinC
The other is the law of cosines. When the three sides are given,
the angles can be determined using the law of cosines.
b fgl= gt
2bc
While the law of cosines can be written in three forms (one for each

angle), it is preferable to use it to find just one angle and use the
law of sines, which is easier to calculate, for finding the other angles.

cos A=

Figure 5.7

Example 5.25 Solve the triangle in
Figure 5.7 for A, B, a

30
and C Figure 5.7

(9]

Operations
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Cos A — 900 + 964 — 400 _ 1464
2(30131.05 1863
Set right index of C to 1863 on D.
Move hairline to 1464 on D.
Read A = 38.2° on Cos at hairline.
20 30 3105
5in 38.2°  sin B~ sin C
Set hairline to 20 on D.
Move 38.2° on S to hairline.
Move hairline to 30 on D.
Read B = 68.1° on S at hairline.
Move hairline to 31.05 on D.
Read C=173.7° on 8 at hairline.
C can be accurately determined also by
180°— A—B="173.7°.

Example 5.26 Solve the triangle in B

Operations

Figure 5.8 for B, C,
and a

b:63.2:b'+b
Figure 5.8

A perpendicular, h, is drawn from B to the
base to form two right triangles.
h 492 b

sin 37.4° sin 90° sin B”

Set right index of C to 49.2 on D.

Move hairline to 37.4° on S.

Read h = 29.8 on C at hairline.

Move hairline to 52.6° on S.

Read b’ = 39.1.

Then, b" = 63.2 — 39.1 = 24.1.
29.8

tan C = 241

Set right index of C to 29.8 on D.

Move hairline to 24.1 on D.

Read C=51°on T.
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Then 298 _ 241 __ a
'sin 51° sin B”  sin 90°
Set hairline to 29.8 on D.
Move 51° on S to hairline.
Move hairline to 24.1 on D.
Read B” = 39° on S at hairline.
Read a = 38.4 on D at right index of C (90° on 8).
B =52.6°+ 39°= 91.6°.

Exercise 5.10
Solution of Triangles

Solve the following triangles:

1. ¢=60, a =40, C=90° 11. a=101,b=116, C=90°
2. a=80, A=75° C=90° 12. a=50,b=23.3,C=90°

3. A=50°, B=55°c=25 13. a=621,b=227,C=90°

4. a=20,b=25 C=60 14. a=15,b=18,C=36°

5. a=12.3,b=202 C=90° 15. A=68°,B=59,a=25

6. a=20,b= 25, c= 30 16. A=28.6°,a=52.8,c=12.4
7. a=24, A=45°,C=90° 17. a=175,c= 100, B=42°

8. b=10.46, c=0.58, C = 90° 18. b=28.3,c=36.7, A=37.3°
9. a=13.2,B=22°40',C=90° 19. a=30,b=50,c=60
10. a=14,A=9°,C=90° 20. a=35.8,b=47.2,c=54.3

5.11 VECTOR ANALYSIS AND COMPLEX NUMBERS

From the standpoint of the mechanics of the computation, vector
analysis is essentially an application of right triangle analysis
and solution. The theory of complex numbers deals with subject

matter only slightly more complicated, but conveniently solved
with the VERSALOG II slide rule.

VYECTOR ANALYSIS
A vector is a quantity having both magnitude and direction. Using
rectilinear coordinates, x and y, a vector quantity is compietely
described by an x component and a y component which are combined
(i.e., the vector sum is taken) to form resultant R, oriented at some
angle © with the horizontal.
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x=Rcos O ¥ A
y=Rsin© H///El :
R =Vxz+ yz P 9‘ X X
Figure 5.9 .
tan © =§ ¢

Example 5.27 If R = 8 and © = 19°, solve for the x and y com-
ponents.

Operations  Set the right index of C to 8 on D.
Move hairline to 27° on Cos.
Read x = 7.13 on D at hairline.
Move hairline to 27° on S.
Read y = 3.63 on D at hairline.

COMPLEX NUMBERS
A complex number of the form x + jy where j="V— 1 may be repre-
sented in a complex plane, using a coordinate system, with x being
the real axis and jy the imaginary axis.

P(x.¥)
The number may be presented X s (
graphically in Figure 5.10 /5’
by the point R, whose ,»\’ i)
coordinates are x and y. 78y x —
Figure 5.10

It may be shown that * = cos © + j sin © and therefore pe® = p cos
O + jp sin ©. Here the complex number pe (which is commonly
simplified, pe’® = p/©) consists of two parts, p cos © being the real
part, and jp sin 6, the imaginary part.

The above expression may be simplified by noting that p cos © = x
and p sin © = y. Then p/@ = x + jy. The x and y values are deter-
mined as vector components of p as previously explained. This
operation is called changing from exponential form to component
form.
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Example 5.28 Change to exponential form: 7.2 + j4.5 = 8.49/32°

Operations tan ©= %

Set right index of C to 7.2 on D.
Move hairline to 4.5 on D.
Read © = 32° on T at hairline.

p= S A
gin 32°
Move 32° on S to hairline.
Read p = 8.49 on D at right index of C.

Example 5.29 Change to coordinate form: 5.83 /39.4°= 4.5+j3.7

Operations  Set right index of C to 58.3 on D.
Move hairline to 39.4° on S.
Read y = 3.7 on D at hairline.
Move hairline to 39.4° on Cos.
Read x = 4.5 on D at hairline.

Exercise 5.11

Vector Analysis and Complex Numbers

Determine the x and y components of the following vectors:
1. R=5,0=60° 3. R=2,0=30F 5. R=4,0=2%4
2. R=3,6=90r 4 R=5,06=30 6. R=17,0=35°

Change to exponential form:

7. 3+ j4 8. 4+33 9. 14+ j8.9

Solve for x and y:

10. 21/27° = x + jy 11. 8.49/32° = x + jy

iR

CHAPTER 6

APPLICATIONS TO TYPICAL PROBLEMS IN MATHEMATICS

In the chapters that follow, applications to specific areas of applied
mathematics will be discussed. In this chapter we shall give exam-
ples of problems found in mathematics courses from arithmetic to
calculus and differential equations. The number and types of
problems are, of course, almost endless; the examples selected
here are merely typical problems in each area. Although we have
indicated the formulas to be used, no attempt is made to explain
the derivation of these formulas, since our prime interest is the
application of the slide rule to evaluate the results. The interested
student may consult any good textbook on the subject, not only for
explanations of method, but for obtaining a larger selection of
problems for practice. It is suggested that an estimate of each
answer be made, where possible, not only for decimal point location,
but as a check on the method of solution. Thus every solution of a
mathematical problem should end with the question, “Is this a
reasonable answer?” For some problems an accurate sketch will
provide a very reasonable estimate of the answer, and thus errors
in caleculations or in methods of solution will be quickly noted.

6.1 ARITHMETIC

Example 6.1 An order calls for making 5,000 pieces, each 1.56"
long on a screw machine. Assuming 8% waste, how
many 12’ bars of material would be required for
this job?

5,000 x 1.56" x .92
144"

= 49.8, or 50 bars

References: Section 2.9, Combined Multiplication and Division
Series.

Example 6.2 When wheat is ground into flour, the flour weighs
17/19 as much as the wheat. How much wheat must
be used to produce 340 pounds of flour? Since

21
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Reference:

Example 6.3

Reference:

Example 6.4

Ibs of flour _ 17
Ibs of wheat 19

340 17
Ibs of wheat 19

lbs of wheat = 380
Tt takes 380 Ibs of wheat to produce 340 1bs of flour.
Section 2.14 Ratio and Proportion

A manufacturer of belting uses the following for-
mula for estimating the number of feet in a roll of
belting.

—nx (259

2

where f= number of feet in the roll
D = outside diameter of the roll in feet
d = inside diameter of the roll in feet
n = number of coils in the roll

Use this formula to estimate the number of feet in
arollwithD=4.5 ,d=1%,and n=50.

_ 50m(4.5+ 0.5)

: 2
f= 393

There are approximately 393 feet of belting in the
roll.

Section 2.13 Multiplication and Division using =

A bag of fertilizer will treat 2500 square feet of
grass. How many bags are needed for a park with
4 acres of grass? One acre = 43,560 square feet.

4 x 43,500
2500

= 69.6 or 70 bags
It will require 70 bags to treat the 4 acres of grass.

Number of bags =
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Reference:  Section 2.9 Combined Multiplication and Division
Series

Example 6.5 If Noah was directed to make the ark 300 cubits
long, 50 cubits wide, and 30 cubits high, find the
dimensions in feet. Take 1 cubit = 18.24 inches.

18.24

length = 15 % 300 = 456
. 1824

width = 19 % 50= 176

height = 1?'54 X 30 = 45.6

The dimensions of the ark are 456 feet long, 76 feet
wide, and 45.6 feet high.

Reference: Section 2.10 Multiplication of a Single Factor by a
Series of Numbers

6.2 ALGEBRA
Example 6.6 Solve the exponential equation

75(1.03)™* = 225

(1.03*=3
4% = 37.16
x=9.29

Therefore x = 9.29

Reference: Section 4.3 Specialized Operations Using Log log
Scales, Exponential Equations

Example 6.7 Solve the logarithmic equation

log, 4x = 2.4
' 4x = 5.28
x=132

Therefore x = 1.32

Reference: Section 4.3 Specialized Operations Using Log Log
Scales, Logarithms to Any Base
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Example 6.8 The first term of a geometric progression is 3, the

common ratio is §, and the nth term is % Findn,

the number of terms.

n=ur™ " where n=the number of terms
u = the first term
r = the common ratio

S(Q)H _ 512
3/ 6561
(.667)!' = .026
n—-1=90
Since n — 1= 9, n = 10, the number of terms is ten.
Reference:  Section 4.3 Specialized Operations Using Log Log
Scales, Exponential Equations

Example 6.9 A man deposits $250 in a savings bank at the end
of each six months for 20 years. If the interest rate
is 8% per year compounded semi-annually, what
will be the amount of his acecount at the end of 20
years?

The formula for the amount of an annuity F, is:

(14+1)" — 1}

-
r

where A = amount of each deposit
r = the rate of interest per period
n = number of interest periods

(10250 — 1
F= 250(—%—& e )

_ 250 x 1.685
0.025

= 16,850
Therefore the amount after 20 years equals $16,850

Reference: Section 4.1 Powers and Roots of Numbers, Powers
and Roots of Numbers Greater than 1.001
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Example 6.10 A family buys a home for $40,000, with a down
payment of $10,000 and a 15 year mortgage at
6%. What are the monthly payments?

The formula for the present value of an annuity

P, is:
p— A[l = (1+r)‘“]
r
L [1—=(1.005)
$30,000 = A[—D05 ]
$30,000= A (118.5)

A= $253
The payments are $253 per month.

Reference: Section 4.1 Powers and Root Numbers, Nega-
tive Powers and Roots of Numbers

6.3 GEOMETRY
Example 6.11 Find the area of a 60° sector of a circle of radius 5",

360 ar?

60X 7 X 5
=7 360

The area is 13.09 square inches.

A=

= 13.09

Reference: Section 3.3 Combined Operations with Sqguares
and Square Roots, also Section 2.13, Multiplication
and Division using =

Example 6.12 Find the volume of a pyramid of height 10" and
with the base an equilateral triangle of side 6".

_¢V3h
12

_6V3x10
12

The volume is 52.0 cubic inches.

\'%

= 52.0
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Reference: Section 3.3 Combined Operations with Square
and Square Roots

Example 6.13 How many gallons of water are contained in a
cylindrical tank 36" high and with radius 18.5"?
There are 231 cubic inches in 1 gallon.
wr? h
231

X (1858 X 36 _
= o = 168

There are 168 gallons in the tank.

G=

Reference: Section 3.3 Combined Operations with Square and
Square Roots, also Section 2.13, Multiplication
and Division using =

Example 6.14 Find the length of BE in Figure 6.1 if AE = 12.5,
CE=14.3, DE= 2.6.

By geometry =
BE _CE A :
DE AE
BE 143
2.6 125 c
Figure 6.1
BE = 297

R ference: Section 2.14 Ratio and Proportion

Figure 6.2
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Example 6.15 BG, CH, DJ, EK, and FL are parallel lines in
Figure 6.2. Find GH, HJ, JK, and KL
if AG = 1.7, and the line segments
on the left are as shown iIn

Figure 6.2
Each pair of segments

) AG
has the same ratio as AB"

1.7 GH_HJ_ JK KL

12 23 34 38 13
GH=326 HJ=482 JK=538 KL=184
Reference: Section 2.14 Ratio and Proportion

65.8

20°

1‘5° }

X
Figure 6.3

6.4 TRIGONOMETRY

Example 6.16 The flag pole in Figure 6.3 is 65.8 feet high, and
stands on the top of a hill. From a point at the
foot of the hill the angle of elevation of the
top of the pole is 20° and that of the foot of the
pole is 16.5°. Find the height of the hill.

From the figure, x = h cot 16.5°
x = (h + 65.8) cot 20°

Solving the pair of equations,

658 cot 200
h= o 16.5° — oot 20° — 280

The hill is 288 feet high.
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Reference: Section 5.6 The Secant, Cosecant and Cotangent
Functions of Angles, Also Section 5.9 Combined
Operations with the Trigonometric Functions

Example 6.17 The angles of depression of two boats in line
with a cliff are 10.5° and 12.6°. If the
boats are 980 feet apart, find the height of
the cliff. See Figure 6.4.

By the law of sines
_ 980 sin 10.5°

sin 2.1°

21°

From right triangle ABC B

Cowl " |

Figure 6.4
h= asin 12.6°
Hence b - 980 sin 10.5° sin 12.6°

sin 2.1°
= 1063.
The height of the cliff is 1063 feet.

Reference: Section 5.3 The Sine Function of Angles from 0°
to 90°, also Section 5.9 Combined Operations with
the Trigonometric Scales

6.5 CALCULUS

Example 6.18 Evaluate the definite integral by the Trapezoidal

Rule. Use n= 10.

fo x V35— ¥ dx
Area:h(%yo+ Y1+y2+"'+Ynfl+%yn) Ax

=050+ 05 V2475 + V24 + 1.5 V2275 + 2 V21
+25V1875+ 3 V16+ 35 V1275+ 4 V9
+4.5 V475 + 2.5 V0)

= 40.42
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The value of the definite integral is 40.42, which
may be checked by ordinary integration.

Reference: Section 3.1 Squares and Square Roots using R,
and R, Scales

6.6 DIFFERENTIAL EQUATIONS

Example 6.19 If the rate of increase in population of a city is
proportional to the population, and if the popula-
tion doubles in 50 years, in how many years will
it be 4 times as great?

The differential equation is %% =ky

where y is the population at any given time t.

The solution is

y=C et
whe(;'e C is the initial population, since y=C when
t=10.
When the population doubles
2C = C &%
e50k p— 2
k=0.014

Therefore y = Ce®#

When the population is 4 times
as great 40 = C 014t
@014t = 4

t=99.
The population will be 4 times as great in 99 years.
Reference: Section 4.2 Powers and Roots of e

Example 6.20 A heavy cylindrical buoy 1.5 feet in diameter
floats in fresh water (density 62.4 pounds per cubic
foot). When it is slightly depressed it vibrates with
a period of 2.8 seconds. Find the weight of the buoy.
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When the buoy is depressed a distance x, the
upward buoyant force F equals the weight of the
displaced water. Hence

__mw(1.5)* 624
=————""x

F 4
2
Since F = ma = g %, where W is the weight of

the buoy, and since the restoring force is opposite
in direction to the displacement,

Wdx __ m(150624

g dt? 4
Taking g = 32.2,
dzx 3550
HE2§ o= (1)

It is shown in any textbook of mechanics or
differential equations that equation (1) represents
simple harmonic motion, with period equal to

20VW

Y~ H
3550 ence
2nVW —98
V3550
(2.8)2 X 3550
W="—"737
= T05 pounds

Reference: Section 3.3 Combined Operations with Squares
and Square Roots, also Section 2.13 Multiplication
and Division using «
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butterfat and the farmer is paid 75 cents per pound of butterfat,
what amount is he paid?

. A map of the United States is drawn to a scale of 1 inch to 240

miles. If the airline distance from New York to Chicago is 713
miles, how far apart are these cities on the map?

. A box of bolts weighs 37.4 pounds. The empty box weighs 3.3

pounds. If 100 holts weigh 1.6 pounds, what is the approximate
number of bolts in the box?

. The shadow of a church with a tall steeple is 160 feet long at

the same time of the day that the shadow of a 60-foot flag pole
is 76 feet long. Find the height of the top of the steeple.

. The specific gravity of a substance is the ratio of the weight of

the substance to the weight of an equal volume of water. A cubic
foot of water weighs 62.4 pounds. A cubic foot of aluminum
weighs 168.5 pounds. Find the specific gravity of aluminum.

. Cottonseed oil has a specific gravity of 0.926. What is the

weight of cne gallon of cottonseed oil if one gallon of water
weighs 8.34 pounds?

. A recording tape plays at a speed of 1 inches per second. What

is the playing time, in hours, of a 1200-foot tape?

. If a baseball is dropped from a height of 1000 feet, how long

will it take to reach the ground, and with what velocity? (If t

5

is the time, v the velocity, and s the distance, then t = 16

and v= 545 Vs.

2
. In the formula k= 1"21—;’, find k if M= 240, v— 64, and g = 32.2.
. Find the future value of $1500 at 4.5% compounded quarterly
for 8 years. The formula is A= P(1 + r)", where F is the future

value, P is the principle, r is the interest rate per period, and

n is the number of periods.

Exercises 6.1 thru 6.6

Applications to Typical Problems in Mathematics . Find the discounted value of $5000 due in 15 years at interest

1. A piece of tin with an area of 46 square inches is cut from a 4% compounded quarterly. The formula is P= F(1 + r) ™. See
larger rectangular piece 8 inches by 7 inches. What per cent exercise 11.

of the larger sheet is wasted?

2. 4000 pounds of milk are delivered to a dairy. If the milk is 4.7%

. The distance that a person can see depends upon his height
above the surface of the earth. To find the distance a person
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14.

15.

16.

17.
18,

19.

20.

21.

22.

23.

24.

EXERCISES

can see from a height of 1000 feet, use the formula r=1.065- fﬁl-l ,

where r is the approximate distance in miles and h is the
height in feet.

The elongation of a spring varies directly as the weight applied.
If a weight of 50 pounds causes an elongation of 4 inches, find
the elongation caused by a weight of 35 pounds.

What is the length of the side of a square whose area is 2.66
square centimeters?

A A B
Find the length of AC in the figure. 25 (_23
See Example 6.15, Section 6.3 D E 4
:
c D

Find the length of CE in the figure. B

Find the area of a circular sector of 135° with radius 16 inches.
See Example 6.11 Section 6.3.

How many gallons will a cylindrical can hold if its diameter
is 14 inches and its height is 10 inches. One cubic foot equals
7.5 gallons.

Find the diagonal of a cube with edge equal to 4.43 inches. Use
the formula D = eV'3, where e is edge length.

Find the diagonal of one face of the cube of problem 20. Use the
formula d = V2, where e is edge length.

A wheel is driven by a belt. The angular velocity of the wheel is
S
3
Find the linear velocity of the belt in feet per minute. v=r0O.

radians per second and the radius of the wheel is 1.25 feet.

The tires of an automobile have a diameter of 30 inches. Find
the angular velocity of the wheels when the car is driven at
50 miles per hour. How many revolutions per minute do the

wheels make? O = %

Find the highest point reached by a projectile with initial
velocity of 1400 feet per second and angle of projection (6)= 3(°.
Use the formula
B, 2 v,2 8in? O

max. 2
and take g = 32. g

EXERCISES 103

25. Find the range of the projectile of problem 24, using the formula
_v,?sin’ 20
g

26. The centrifugal force acting on a car going around a circular
curve is given by the formula

R

w v?
gr

where w = weight of car in pounds, v = velocity in feet per
second, r = radius in feet, and g = 32.

Find the force on a 3200 pound car going around a curve of
radius 100 feet at 60 miles per hour (88 feet per second).

L

27. The angle of elevation of the top of an inaccessible cliff is 48°
and 150 feet farther away it is 27°. Find the height of the cliff.

28. From a building 284 feet high, on the edge of a lake, the angle
of depression of a boat is 16.2°. Beyond this boat and in line
with it is another boat with angle of depression 12.5°. Find the
distance between the boats.

29. Solve the equation 2= 77.8,

30. Solve the equation log; 5x = 3.

31. Evaluate the integral by means of the trapezoidal rule, using
n=4

4+ dx .
————. See Example 6.18, Section 6.5.
jo V4 + x? P




CHAPTER 7

APPLICATIONS TO BUSINESS

The Versalog II slide rule is ideal for performing computations
typically encountered in business. The purpose of this chapter is to
illustrate some of these applications. Most business calculations
simply involve multiplication and division, and the C, CI, and D
scales and their folded counterparts can save considerable time
when they are used in the most efficient manner. Since in business
the cost of using money is basic, compound interest and present
value computations are important. Here, the log log and reciprocal
log log scales are particularly helpful. Many problems of statistical
analysis and statistical inference can also be easily solved with the
Versalog. Several examples of representative problems and their
solutions follow.

7.1 PERCENTAGE

The use of percentages is very common in business. The use of the
slide rule is a natural choice, since typically, percentages are not
carried beyond slide rule accuracy. In pricing decisions, for example,
these formulas may be used.

c s when: ¢= cost
(1—r) s = selling price
r = gross profit rate

and ll—d)=s when: s= net selling price
1= list price
d = discount rate

MARK UP

Example 7.1 What should be the unit selling price of an item to
yield a 35% gross profit, if it costs $6.95 per dozen?

$6.95
iTx1-35 089
Operation  Set the hairline at $6.95 on DF (the upper scale
combination is chosen because less slide move-
ment is required); move 12 on CF to the hairline,
and move the hairline to .65 on CIF. Read $0.89 on

105
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DF at the hairline. The unit cost of $0.58 can be ] 3. 15% discount is offered?

read on D at the right index of C.
4. 25% discount is offered?

DISCOUNT :
Example 7.2 For a particular quantity of goods, a chain discount ' 5. What percentage of the total sales is represented by each product?
of 25% + 10% is offered off of the list price of 2 Product a 18.4 thousand units
$289.00. What is the net selling price? . Product b 23.9
$289 (.75) (.9) = $195 " Productc 7.6
) Productd 5.0
Operation  The formula is extended to accommeodate the chain ; Patal B0 thongaml viits

discount. Set the hairline to $289 on D, move .75 on

CI to the hairline. Move the hairline to .9 on CF

and read $195 on DF at the hairline. 7.2 COMPOUND INTEREST —FUTURE AND PRESENT VALUE

The following equations apply to interval compound interest and

PER CENT OF TOTAL present value respectively.

The percentage breakdown of a total is frequently used for com-

parison, analysis, allocation of costs, etc. | F=P(l+ry when: F = the future value in period n
Example 7.3 Determine the percentage that each revenue source P = the present value

represented of the total revenue for March. _ P=F({l+rr" n = the number of periods
S March % of total 3 r = the interest rate per period
SALES $ 84,600 52.0% FUTURE VALUE OF AN INVESTMENT
RENTALS 39,900 24.5 [ Example 7.3 How much will $50 invested at 44% interest com-
PARTS 21,300 131 2 pounded semi-annually amount to in 5 years?
SERVICE 16,900 10.4 - 0.045
TOTAL $162,700 100.0% r= T = 0.0225; n=2(5)= 10

Operation  Opposite the left index of D, set 162,700 on C. Move

the hairline to 84,600 on C and read 52.0% on D at Fi=o0 (10225 SoDLiddin= 36250

the hairline. Move hairline to 39,900 on C; read Operations  Set the hairline to 1.0225 on LL1, and read approxi-
24.5% on D. Move hairline to 21,300 on CF, read - mately 1.249 at the hairline on LL2, Set the hair-
13.1% on DF. Move hairline to 16,900 on CF, read ! line to 1.249 on DF, align 50 on CIF with the
10.4 on DF. ] hairline and read $62.50 on D at the index of C.

PRESENT VALUE OF AN INVESTMENT

E ise 7.1 2
xercise Example 7.4 What is the present value of an investment that, in

Pffcen*ﬂges ‘ ' _ _ . three years, will pay $75,000 if the cost of capital
Find the selling price of an item costing $14.76 if a; is 6%°?
1. 26% gross profit is required. ' P = $75,000 (1.06)~* = $75,000 (0.84) = $63,000

2. 29% gross profit is required. Operations Set the hairline to 1.06 on LL1, slide the index of C

to the hairline, slide the hairline to 3 on C, and read

What is the net price of an article listing for $70.00 if a; approximately 0.8395 on LL/2. Set 0.84 on DF
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slide $75,000 on CIF to the hairline, and read
$63,000 on D.

APPRECIATION — RATE OF RETURN OF AN INVESTMENT

The rate of appreciation can be quickly and accurately determined

by rewriting the above relationship:
1

(-

Example 7.5 If land is purchased for speculation for $4,850 and
sold for $9,800 54 years later, what was the average
annual rate of return on the investment?

1
_ 359,800)5-5 4 = _
r= ($4,850 1=1(2.02) 1=.1363= 13.63%
Operations Divide $9,800 by $4,850 to find 2.02. Set the hair-
line to 2.02 on LL2, slide 5.5 on C to the hairline,
and read .1363 on LL2 at the index of C, or a 13.63%
average annual rate of return on the investment.

Exercise 7.2

Compound Interest— Future and Present Value

What rate of compound interest is necessary to double the value of
an investment in the following period of time?

1. 5 years 2. 15 years 3. 25 years

4. How much must a person invest today so that it will amount to
$1,000 in 25 years at 6% compounded annually?

7.2 ANNUITIES —FUTURE AND PRESENT VALUE
An annuity is a series of equal payments (or receipts) to be paid (or
received) at the beginning (or end) of successive periods of equal
length. The appropriate equations follow, when A is the amount of
the annuity payment (or receipt), and when F, P, n, and r remain as
previously defined.
n__
Future value of an annuity (in arrears): F= A ((H-—?—-l)

Present value of an annuity (in arrears): P= A (—] — (1: L )
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RETIREMENT FUND
Example 7.6 If a company sets aside $100 a year in a retirement

Operations

trust fund for an employee 30 years old, how much
will it amount to when the employee retires at age
65 if the retirement trust fund earns 4% per annum?

e ((LO4B =1\ 7395 1\
F= $100(———.0 . ) - $100(T) = $7.370

The value (1.04)* was found by setting the hairline
at 1.04 on LL1, sliding 35 on CI to the hairline and
reading 3.95 on LL3 at the index of CI.

INSTALLMENT BUYING
Example 7.7 Suppose the buyer of an automobile wishes to pay

Operations

$2,000 of its cost in monthly installments and has
obtained a loan with an annual interest rate of
6 per cent. What monthly payment must be made
over a period of two years in order to obtain title to
the automobile?

r=22%= 0.005; n=2(12) = 24
$2,000= A [%‘?ﬂ] -
A [1“_0-—35872] = A (22.6)
A= $§£g° = $88.50

The value (1.005)** was obtained by setting the
hairline to 1.005 on LLO, moving 24 on CI to the
hairline, moving the hairline to the left index of CI,
and reading .8872 at the hairline on LL/2. The
monthly payment will be approximately $88.50 for
two years. The total interest paid will be 24($88.50)
— $2,000= $124.

LEASING DECISION
Example 7.8 How much would a firm be willing to accept in one

payment in advance as settlement of a 3 year lease,
instead of the usual monthly rent of $500 if the
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firm’s cost of capital was 9% per year? The present
value of subsequent rent is:

1— (1.0075)®
P— $5oo( Lo )—

$500( 00775 = $15,330

Operations To find the value (1.0075)Y %, set the hairline at
1.0075 on the LLO scale, slide 35 on CI to the hair-
line and read .77 on LL/2 at the index of CI. $15,830
($15,330 + $500) is the present value of the entire
three year lease. The rent for the first month would
be paid at the same time under either alternative
and the final rent is 35 months away. Thus, n= 35
and the first month’s rent is added to the present
value of the subsequent rent to determine the
present value of the entire three year lease. In
effect, this is the present value of an annuity in
advance and the equation could also be rewritten as

_ -t — 1
1 (1+rl') i +1]

P=A[

CAPITAL EQUIPMENT DECISION
Example 7.9 What price could profitably be paid for a machine
that would last 5 years (and become worthless there-
after) and would save $42,500 a year over present
production methods, if the minimum acceptable re-
turn on capital of the firm was 12% per year?

Here e ™ replaces (1 + r)™™ in the equation, since
the income stream i3 assumed to be continuous
rather than at regular intervals, and the solution is:

_ 1 — e—10.12](5) _
p— $42’5°°(—W) -
$42500( 1349) $159,700

Operations To find the value e (1245 simply set the hairline to
0.60 on the D scale and read 0.549 on LL/2.
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Exercises 7.3

Annuities — Futyre and Present Values

If interest is compounded annually, find the final amount of each of
the following ordinary annuities.

Annuity payment | No. of years | Annual interest rate
1. 480 15 4%
2, 360 20 54%
3. 2,400 10 61%
4. 1,450 38 4%
5. If a company sets aside $250 per year in a retirement trust fund

for a 45 year old employee, how much will it amount to at age 65
if the fund earns 6% per annum?

7.4 STATISTICAL ANALYSIS

Statistical analysis is a body of methods enabling more informal
decisions in the face of uncertainty. The slide rule can be used to
readily solve many problems in this area and Versalog II is par-
ticularly well suited for these applications, because of logical scale
arrangements, the incorporation of the R, and R, scales, and the
wide range of the log log scale. For example, probabilities as small
as 0.00005, which may be encountered during an analysis, can be
easily determined on the LL/3 scale.

BINOMIAL DISTRIBUTION

Example 7.10 The probability of having r successes in a random
sample of N from a population with the parameter
P is expressed in the Binomial Distribution as:

Pr= c( )P’(l — P

What is the probability of finding exactly 2 defects
in a random sample of 10 parts from a lot that con-
tains 5% defective parts? In this case:

N = the sample size
r = the number of defects in the sample
P = the proportion of defects in the population
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By substitution, the probability is expressed as:

Pr = g 0= (0.05)0.95)" =

8l
45 (0.0025) {0.6635) = 0.0746

Operations  Set the hairline at 0.95 on LL/1, slide right index
of C to the hairline, move the hairline to 8 on C,
and read 0.6635 on LL/2. Set hairline at 0.05 on
LL/3, slide 2 on CI to the hairline, move the hair-
line to the right index of C and read 0.0025 on
LL/3. Cancelling 8! in both the numerator and
denominator, 9 on D multiplied mentally by 10
and divided by 2 on CI equals 45 on D, slide 0.0025
cn CI to hairline and read 0.0746 on D opposite
approximately 0.664 on C. Thus, the probability of
finding exactly 2 defects in this lot is 0.0746, or
about a 7{% chance.

NORMAL DISTRIBUTION
Example 7.11 In testing the hypothesis that the sample mean X
is not significantly greater than the population
mean . when the population variance o is known,
it is necessary to solve the following equation for z.

If z > z,_,, the hypothesis is rejected at the 1 — o
level of significance. A particular type of machine
produces an average of 18.5 units per hour. The
variance of this output is 2.0 units. A modification
becomes available that will improve production,
but it will be uneconomical unless production is
increased to at least 20 units per hour. Manage-
ment is willing to take a 20% risk of accepting the
modification when it is not economical {(a = .20).
From a table of the Normal Distribution, zg, =
0.842. A sample of twelve modified machines is
tested and produce a mean of 20.3 units per hour.
The hypothesis being tested is that the average
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output of all modified machines is not greater than
20 units per hour.

_203-20_ /(0.3rQ2)_
\/_ 20 = 0.734

Operations  Set the hairline on 0.3 on R,, move 12 on CI to the
hairline, move the hairline to 2.0 on CI, and read
0.734 on R,. Since z, 0.734, is not greater than z ,,
0.842, the hypothesis is accepted and the modifi-
cation is not purchased.

Exercise 7.4

Statistical Analysis

1. A quality control engineer examines 10 parts selected at random
from the assembly line in a manufacturing plant. By experience,
it has been found that 5% of the items turned out are defective.
What is the probability that exactly 3 of the selected items are
defective?

2, If a manufacturing process results in a “defect rate” of 10%,
what is the probability that 2 of 5 parts selected at random from
a lot of 50 parts will be defective?

3. A mutual fund has an extensive holding of common stocks, 80%
of which pay some dividends. What is the probability that all of
a random sample of 10 stocks pay dividends?

4. In a certain city, one of every ten auto licenses issued are for a
foreign made car. In a random sample of eight cars, what is the
probability that there will be at least six domestic cars? (Con-
sider the separate probabilities of six, seven, or eight domestic
cars in the sample).

5. In testing its job applicants over a long period of time, a sales
firm has established a normal distribution of test scores with a
mean of 10 and a variance of 4. If a random sample of 25 scores
is taken, what is the probability that the sample mean exceeds
10.6?




CHAPTER 8

APPLICATIONS TO CIVIL ENGINEERING

The purpose of this chapter is to illustrate some of the many appli-
cations of the slide rule to civil engineering problems. (Other
chapters illustrating other fields of engineering follow.) No attempt
is made to cover the entire field of civil engineering since to do so
would require many volumes. Only a few typical problems from
various branches of this field are discussed. Equations, where used,
are given without derivation.

8.1 SURVEYING PROBLEMS

The slide rule is always useful for checking even though its accuracy
is not always sufficient for a particular problem solution. In calcu-
lating dimensions and long lengths with precision, it is often
necessary to resort to the use of five or seven place logarithms, or
to refer to extensive tables of natural functions for use with a
mechanical calculator. This is particularly true in surveying
problems. In such cases, errors may sometimes be discovered by
approximate slide rule checking of a precisely calculated result.

EARTHWORK QUANTITIES

The slide rule is useful in ecalculating the amount of earthwork
to be moved for the construction of a highway. The contour of the
ground is determined by leveling along the proposed line of the
road and the area of the cross sections perpendicular to this line
are calculated at various stations along the road. V, the volume
of earth to be moved, may then be determined by either of two
methods. The first method is called the “average end area” method
in which V = ¥(A, + A,)L, where A, and A, are cross sectional
areas and L is the distance between them.

Example 8.1 Determine the volume of earthwork to be moved if
A, is calculated as 162(ft.)? and A, as 184(ft.)?, with
the distance L between the sections 54 ft.

Solution ~ V = } (162 + 184)54 = 173(54) = 9,340(ft.)* by
slide rule.
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Solving for the sum of 162 + 184 and setting 346 on
the D scale, we can divide by 2 with the C scale, and
moving hairline to 54 on C scale, our answer 9,340
is found on the D scale. One setting of the slide is
all that is necessary.

While the above formula is simple, it is not quite exact enough.
When greater precision is desired the “prismoidal” formula is used.
This method involves an additional area A,, the area of a cross
section half-way between A, and A,. By the prismoidal formula
V=4%A,+ 44, + A)L.

Example 8.2 What volume of earthwork is to be moved if
A, = 500(ft.», A, = 684(ft.)?, A~ 896(ft.)?, and
L=92ft.

Solution V=13(500+ 2736 + 896)92 = §(4,132)92 = 63,400(ft.)*
by slide rule.

TAPING

When measuring distances by tape in the field, many times it is
necessary to measure along a slope in hilly country, although the
horizontal distance is desired. It is then necessary to correct the
slope measurement. This may be done if the angle of slope is
determined by use of a transit. If S is the slope measurement or
taped distance, h the horizontal length and A the angle of slope,
then h =S cos A.

Example 8.3 What is the horizontal distance between two points
131 ft. apart when measured along a 15° slope?

Solution h = 131 cos 15° = 126.5 ft. by use of the cos, D,
and D scales.

A common source of error is the use of a tape too long or too short.
However, if the tape being used is compared with a standard and
the error in its length determined, a correction may be made.

Example 8.4 In measuring a line by use of a 100 ft. tape the
measured distance was 864.91 ft. The tape was
found to be 0.14 ft. too short. What is the true
length of the line?

864.91

Solution The correction is (0.14) = 1.21 by slide rule.

100
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This error of 1.21 ft. must be added to 864.91 ft. to
give the correct length and 866.12 ft. (Had the tape
been 0.14 ft. too long, the correction would have
been subtracted.)

LATITUDES AND DEPARTURES

In locating a point with reference to a previously located point from
field survey data, the method of latitudes and departures is often
used.

The latitude is defined as the component of a given distance in the
north-south direction whereas the departure is the component in
the east-west direction. The bearing of a line is the angle between
the line and the true north.

LAT, DEP.

Line| Diat. [ Bearing

19.1/
80.5'
51.4' N.

Figure 8.1 —Tape Distances and Bearings.

Figure 8.1 represents a plot of a field traverse made by taping dis-
tances, AB, BC, and CD. At each point a bearing was taken. These
and the taped distances are recorded in the table. The line AD was
not measured in the field. Nevertheless its length and bearing
are desired.

It may be seen from the figure that the latitude of each distance is
the length mulitiplied by the cosine of the bearing angle and the
departure is the length multiplied by the sine of the bearing. The
necessary multiplications, performed by slide rule, are set down in
the appropriate columns of the table. After summing the distances
we observe that point D is 51.4' north and 226.0’ east of A. Length

DA is therefore V(51.4) + (226.0)> = 231.8". Angle O in the figure

5 . 514
is then arc sin 2318~ 12.8° or 12° — 48'. The same angle may be

determined from the rélationship © = arc tan % which also yields
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12.8°. The bearing of point A from point D is then 90° — © and since
A is south and west of D, the bearing is designated S.77° — 12° W.
The same calculations, performed with 5-place logarithmic tables,
result in a bearing of 5.77° — 09’ — 54" W and a length DA =231.84".
Line DA represents the closing line of the traverse. It is obvious
that the slide rule calculations provide an accurate check.

INACCESSIBLE DISTANCES
In running a survey line, obstacles may occur on the line of sight or
it may be impossible to measure certain lengths such as the distance
across a river. In such cases it is necessary to extend the line by
indirect methods. Figure 8.2 illustrates a method for passing an
obstacle by use of angular deflections. Point B is a point visible

SURVEY LINE A~ 9 = BN _ - _ =
OBSTACLE

Figure 8.2 —Inaccessible Distances Through Obstacle.

from A. The procedure then is to measure distance AB and the
angle O. The angle at B is then taken as 2 © and the length. BC as
equal to AB. By sighting along BC point C may be located. Distance
AC is then 2(AB) cos 6. For example, if AB measures 94’ and
O = 21.8° then AC = 2(94') cos 21.8° = 174.6'".

Figure 8.3 illustrates a method for extending a survey line across
a river when it is not practical to measure directly across. Point C
is visible from either A or B.

SURVEY LINE

Figure B.3—Inaccessible Distances Over River.
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Angles at A and B are measured by the use of a transit and distance
AB is accurately measured by tape. The angle at C will then be
. AC sinB
180° — A — B. Then by the law of sines AB _ snC
Example 8.5 In Figure 8.3, find the length of the inaccessible
distance AC if A= 73°18', B=101°, and AB =54 ft.

Solution C=180°—(101°+ 73.3°) = 5.7°
AC _sin 101° _ cos 11°
54’ s8in 5.7° ~ s8in 5.7°
AC = 534 ft., by slide rule using the proportion
principle previously explained.

STADIA CALCULATIONS

A stadia transit is an instrument for determining horizontal and
vertical distances from the observer to a point by taking readings
on a rod held vertically at the point. By this method it is unneces-
sary to tape the distance from the observer to the point. The transit
telescope is provided with an upper, lower, and a middle horizontal
cross hair. The upper and lower cross hairs are equidistant from the
middle cross hair which represents the line of sight of the telescope.
A special stadia rod is held at the point to be located, and the transit
is focused on this rod. Rod readings are taken at the upper and lower
cross hairs, and the rod length between these points, called the rod
intercept r, is determined. Also the vertical angle ©, between the
line of sight and the horizontal, is read at the transit.

The horizontal distance H from the observer to the point is then
calculated by the equation H=a cos © + kr ¢0s0, in which a and k
are instrumental constants, known for any particular transit. The
vertical distance from the telescope to the center of the rod intercept
is V = a 8in® + {kr sin 20.

Example 8.6 The upper and lower cross hair readings of a stadia
transit are 4.32' and 1.14' respectively, with a
vertical angle © = 26'. The rod intercept r = 4.32'
— 1.14. _ 3.18'. Assume instrumental constants a
and k to be 1’ and 100 respectively. Determine (a)
the horizontal distance between the transit and the
stadia rod, and (b) the vertical distance between the
transit and the stadia rod.
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Sclution {a) H=1. cos 26° + 100(3.18) cos? 26° = 0.9’ + 257" =
258'. (b) V= 1. sin 26° + } (100)3.18 sin 52° = 0.4’ +
125.1" = 125.5’. (Ordinarily stadia distance calcu-
lations are made only to the nearest foot, for which
" the slide rule provides ample accuracy.)

RADIUS AND DEGREE OF CURVE OF A CURVED TRACK

In railroad track surveying it is possible to calculate the radius and
the degree of curve from measured lengths of a straight chord C
and the mid-ordinate M.

C Ct 4 4M?
R=—"°——.
AlL—""IM g M
r
D= 571:3:) (approx.) and
TRACK "r D = 2 aresin % (exact).

. C
I=2arcsm§§-.

Figure 8.4—Curved Track.

In Figure 8.4 formulas for calculating the radius R and degree of
curve D are given. The degree of curve is the central angle sub-
tended by a 100’ chord. As an example, suppose the distance C to
be 300" and at 150" from A the ordinate M is found to be 2.15', The

radius is then %’% = 5230’ approx. and the degree of

curve is D= % = 1.095° = 1° — 5.7'. The central angle [ = 2 arc
. 300 o o

sin m— 2(1644 )— 3.288°.

Exercise 8.1

Surveying Problems

1. Calculate the volume of earthwork to be moved between two
stations 73.4 ft. apart if A, = 124(ft.)?, A, = 136(ft.)?, and Az =
154(ft.)*. (a) By the average end area method; (b) by the “pris-
moidal” formula.
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2. A distance measured by a 50 fi. steel tape was found to be
484.15 ft. If the tape used was actually 0.028 ft. too short what is
the true length of the line?

3. Solve for the length of the closing line DA in the traverse shown
in Figure 8.5. Calculate its bearing.

Figure 8.5—Tape Distances and Bearings.

4. If, in passing an obstacle (see Figure 8.2) the deflection angle
measured by transit at A was 37° and the taped distance AB was
86 ft., determine the length AC.

5. Referring to Figure 8.3, determine the distance AC across a river
if AB =75 ft. and angles at A and B are 47° and 115° respectively.

6. If the instrumental constants a and k for a stadia transit are 1’
and 100 respectively, determine the vertical and horizontal
distances V and H from the following stadia readings:

Vertical Angle © Rod Intercept

{a) 10°—-15’ 5.42 ft.
(b) 7°—30 2.14 ft.
(c) 19°— 45’ 4.25 ft.

7. Referring to Figure 8.4, determine the radius R, degree of curve
D, and central angle I for the following values of the chord C and
the mid-ordinate M:

C M
{(a) 208 ft. 6.4 ft.
{(b) 147 ft. 5.65 ft.
(c) 61.5 ft. 1.27 ft.
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8.2. STRUCTURAL DRAFTING

The structural steel draftsman is concerned mainly with the calcu-
lation of the lengths of members and the details of their connec-
tions to other members in the structure. These lengths and details
are shown on drawings which are used in the shop for fabrication of
the various members.

LENGTHS AND BEVELS
Many times it is necessary for members to be skewed and to connect
to other members at an angle. The skew of a connection is ordinarily
indicated on the drawing by a bevel which is a figure calculated to
the nearest Y6 of an inch for the distance perpendicular to a base
line 12" long. Thus in Figure 8.6 the distance R is known as the

bevel.

N
63 }———19'1" —al

_gl | 68— - B oo 6B -
[=]
. ~— In
® BEVEL
L H

Figure 8.6 —Beam and Column Floor Plan.

Figure 8.6 represents a floor plan in which columns and beams are
shown. The beams are indicated by heavy lines and are marked Bl
to B6 inclusive. Due to the skew of beam B1 it will be necessary to
calculate the lengths of Bl, B3 and B4 and the bevel due to the
skew. Beam Bl will be connected at the mid point of the flanges
of column C and D. All distances must be figured to the nearest Yis.

The bevel can be calculated or checked by slide rule, using the prin-
ciple of proportion. Column D is 40" south of column C and its flange
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face is 19'1" or 229" east of that of column C. The bevel R is found
as follows:

R _ 40 _ 48
12 197 229
R=24"

The length of Bl will be V(229) + (48 = V52,500 + 2,300 =

V54,8Q0 = 234" = 19’6". The R, and R, and A scales were used for
determining the squares and the square root of their sum.

The length of B4 will be greater than 16'0". The increase in length

will be termed D' and will be determined by the proportion _6_’1;_%" =

48" D 48 . , ’

209" O TE T — 909 from which D' = 15.73" or 1’3" by proportion.

Then the length of B4 will be 160" + 1'33" = 17'34".

ThB proportion for determining the increased length of B3 will be
] _ 8!'! Dr 48" . ;

12115 — 2297 Or 551 = 3097 from which D' = 32.5" or 2'84".

Hence the length of B3 1s 16'0" + 2'84" = 18'84".

MITER JOINTS

A miter joint is one in which intersecting members meet on a com-
mon line of contact. In detailing the top chord members of a bridge
truss, and in other cases, it is important to know the angle or bevel
of the line of intersection. Figure 8.7 indicates the manner in which
this angle, designated ¢, may be determined. The depths d; and d,
and angles of slope O, and 6, are known for the intersecting mem-
bers. The tangent of angle ¢ may be determined from the formula.

e
GONTACT

d;cose; — dzcosoy
dz sin a; — d; sin [=F)

Tan ¢ =

Figure 8.7 —Miter Joint.




124 STRUCTURAL DRAFTING

Example 8.7 Referring to Figure 8.7, determine the angle and the
bevel R if d, = 124", d, = 124", ©, = 48°, and 6, =
9° 30'45" or 9.51°.

Soluti ¢ 12.75 cos 9.51°—12.5 cos 48° _ 12.58 — 8.36

ution  tan ¢ =35 48° - 12.758in 9.51°  9.28—2.10
_ 222, 0.588. ¢ = arc tan 0.5688 = 30.4°.
7.18
The bevel R = 12 tan ¢ = 7.06" or 74". This bevel, calculated by
slide rule, was also calculated by 5-place logarithmic tables. Both
methods give the same result to the nearest 16"

Exercise 8.2
Structural Drafting
1. Determine the lengths C and bevels R for values A and B given

below:
7 A B
(a) 415%” 2!8"
C B (b) 8'7%" 7] 7"

(c) 14] 9” 4{9%"
12"

Figure 8.8 —Lengths and Bevels.

2. Determine the bevel R for miter joints having the following
properties: (See Figure 8.7)

91 82 _dL dz
(a) 40° 11° 14" 12"
(b) 40° 8° 114" 93"
(c) 520 00 7%# 7_&;:

8.3 STRUCTURAL ANALYSIS

In the stress analysis of structural members, it is necessary to work
constantly with the applied forces. A force, being a vector quantity
having both magnitude and direction, may be resolved into com-
ponents (as in Chapter 5). If convenient, the components may be
used separately. As an example, Figure 8.9 (a) shows a force of
250# acting on a two member truss. The forces in members A and B
are to be determined. For convenience the force A and the applied
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250
g/ 192 #-250%0s 40°
B 20° B_Ages 2 L S

1617 250 sin 40°

ThUSS A sm 20°

(a) (b}

Figure 8.9—-Two Member Truss.

250# force are resolved into their horizontal and vertical com-
ponents. Force B is horizontal and has no vertical component. All
forces and components acting at peint 0 are shown in Figure 8.9 (b).

To maintain equilibrium, the sum of vertical forces must be zero
and the sum of horizontal forces must also be zero. Hence from

Figure 8.9 (b), 192 — A sin 20° = 0, from which A = 31}19‘2?00 = 562#,

Also B — A cos 20° — 161 = 0, from which B = 161 + 562 cos 20° =
161 + 527 = 688#. All of the operations are performed using the
Cos S scales.

A STEEL BEAM

In determining the stresses in a beam, it is necessary to determine
the forces acting, the shear, and the bending moment. The internal
stresses in the material are then determined from the theory of
the strength of materials. As an example, Figure 8.10 illustrates
a steel beam designed to carry a concentrated load of 8,800# on a
span of 11'.

8,800%
[~ " 8WF17
! 5=14.1(in.)?
R K Aw = 1.84(in.)*

Flgure‘ 8.10— Steel Beam.

Its section modulus S and web area Aw are given for use in deter-
mining the moment and shear stresses in the material.

The left reaction force R may be determined by proportion, utilizing
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. R T
the distances from point 0 at the right end of the span 8,800 =11
from which R = 5,600#. This force is the shear acting at the left of
the load. It will be resisted primarily by the web area. Hence the

shearing unit stress %’6—80&(—] = 3,040+# per sq. in.

The moment under the 8,800# load will be the product R X 4"=

5,600(4) = 22,400' #. The unit stress due to this bending moment will
e %2—'%}0{—12—) = 19,060# per sq. in.

Stress analysis problems having to do with steel beams are many

and varied. The above example is intended to serve mgrely as an

illustration of this type of calculation to which the slide rule is

well adapted.

A REINFORCED CONCRETE BEAM

For a simple concrete beam, reinforced by steel to resist tension, it
is necessary to determine the location of the neutral axis of the
cross section before the bending moment stresses can be determined.
The strength of the concrete in tension is ignored. In Figure 8.11
the cross section of a beam is shown, for which the concrete com-
pressive unit stress f. and unit stress in the steel f; are to be deter-
mined when the moment is 440,000#.

locg: B"
_"1 fo X

? _/ ’ Cz-—axrc
1 2
- B X

{5

-x _—-[-‘
Li L Te 2‘3

& P n
\__ 21" 8Q.BARS

w

j= 1
iy
1]
ar— P ¢ ]

{(a} CROSS SECTICN {b)STRESS DIAGRAM

Figure 8.11—Concrete Beam.

The effective area of steel is equivalent to n times its gctual area,
where 1 is the modular ratio, assumed equal to 10 in this case. Tl'%e
effective steel area is therefore 2 x 10 = 20 sq. in. The neutral axis
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may be located by equating the moments of effective tensile and com-
pressive areas about this line. Thus 8X (%) =20(16 — X) or X2+

5X — 80 = 0. This is a quadratic equation which may be solved for X
by the factoring method. Setting the right index of the C scale at
80 on D, the hairline is moved to 6.78 on CI where the simulianeous
hairline reading on D is 11.78, the difference of these two readings
being 5. The neutral axis is therefore located at X = 6.78". The

lever arm between the forces C and T is 16 — §= 13.74", and the

8(6.78) £

TR
(13.74) = 440,000 and f, = 1,180# per sq. in. From the equation
2 £,(13.74) = 440,000, f, = 16,000# per sq. in.

A FILLED ARCH

Arches are frequently used to carry loads over long spans. They are
economical structures provided the end supports are capable of
withstanding the thrusts transmitted by the arch rib and provided
the curve of the arch axis is properly designed. A well designed arch
curve will be such that the applied loads produce primarily forces
or thrusts, with little or no bending moment. For structures of this
type, the log log scales are very useful in evaluating logarithms

and hyperbolic functions.
-

{IEII'I‘T|"|!I]!'Ihl‘l‘]lT|l‘||"l|‘lll
EARTH FILL

moment is either C or T times this lever arm. Hence

¥ f 15

Figure 8.12—A Filled Arch.

In Figure 8.12 the primary load to be carried consists of an earth fill.
The weight of this fill is termed w 1b. per cubic foot. In order to carry
this load without introducing bending moment, the arch axis
curve must be determined by the equation y=h (msh@ (x) — 1),
where H is the horizontal component of the thrust to be resisted by
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a section of arch rib one foot in width. If the ratio of depths of fill is
2
g:hgr,thenH= L5 ;
4[Log.(g + Vg — DF
The angle of slope ¢, at the end of the arch, may be determined from
: L .
the expression tan ¢ = h\/g-smh (E\[g) Then the vertical com-

H
cos &'

ponent of thrust V= H tan ¢ and the maximum thrust T =

Example 8.8 Given a filled arch such that L = 200', w = 120
lbs./cu. ft., r = 40’ and h = 10’ determine:

{(a) The horizontal component of thrust H.

{b) The vertical component of thrust V.

{¢) The maximum thrust T.

(d) The equation of the arch curve.

(e) The vertical distance y at a quarter point of

the span.
Solution  (a) g=20%0 =5
o 1202000 _ 124)10% _ 120109
dilog, 5+ VIDP 4log, 9.9 (2.294)
— 298 000 Ibs.

_ 120 . . (200 [ i20 )
(b) tan & = 10y/75565 sinh ( 2 \228,000
— 0.2294 sinh 2.294)
sinh (2.294) = i(e?** — ~2%) = 4.899

tan ¢ = 1.124
V = H tan ¢ = 228,000 (1.124) = 256,500 lbs.
© T=—_ 228000 43000 tbs.

cos ¢ cos 48.4°

(d) y=10 (cosh 558 000( X)— 1)
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= B
y=10 (oosh 136 1)
(e) At the quarter point of the span, x = 50 ft. At
50

this point y = 10 (cosh 36 1) =10

(cosh 1.147 — 1) =731 &

A GRAVITY DAM

Gravity dams are structures in which the weight of the dam itself
is utilized to balance the pressure of water to prevent overturning.
In calculating the pressures on the base and in investigating the
stability of such structures, the weight of each part of the dam is
calculated separately. Then the moment of all forces about a com-
mon point is determined and the resultant force acting on the base
of the dam is located.

Wis

30

t=s—18.5"

{a) (c)

Figure 8.13— A Gravity Dam.

In Figure 8.13 (a) a simple dam is shown which is to retain a 30’
head of water weighing 62.4 lbs. per cu. ft. For analysis a width of
dam of one foot perpendicular to the figure, is used. The dam is to
be constructed of concrete assumed to weigh 145 lbs. per cu. ft.
Figure 8.13 (b) indicates the separate forces and their locations.
Distance x, locating the resultant vertical component P, is to be
determined.
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The water pressure acts horizontally and at the bottom of the dam 2. Solve for the end reactions R, and Ry and for the moment in the
has an intensity of 62.4(30) = 1,872 lb. per foot. The total force ‘- steel bearn at each load point. Calculate the maximum bending
due to water pressure is the area of the force triangle and is termed ‘ _stress for the loads shown if the section modulus of the beam
F, F, = -329 (1,872) = 28,100 Ib. The forces F, and F; are due to the ' is 107.8(in.)".
weight of concrete, F, being equal to 145(4)32 = 18,600 lb. and F, _ 64007  7500% 9800% 7900% 2160
being EQL;@% = 33,600 Ib. The moment of forces F,, F,, and F; ' l_; " . . . o
about point 0 is balanced by the moment P-x, shown in Figure & 1 2 3 A 5
8.13 (b). Therefore (18,600 + 33,600)x = 28,100(10) + 18,600(2) + Hrr =
33,600(8.83). * L

615,000 ' i 2’ Ara
X = 52500 11.78". Figure 8.15

3. A concrete beam 124 in. wide, with an effective depth d of 27 in.,

The eccentricity e, measured from the center line of the base, is : - :
is reinforced by four 1-inch dia. rods. If the value of n is 10,

then 11.78' — 9.25' = 2.53'. Pressures p, and p, indicated in Figure

: locate the neutral axis and determi i
8.13 (¢) may now be determined from the equations p, =§(1 —%) = moment of 1,500,000 in. 1b. etermine f. and f; for a bending
5? ,82(5)0 (1 _ 6(128'55?)) — 2,820(1 ~ 0.821) — 506 Tb. per sq. ft,; and ' ! 4. Determinelthe economical curve equation for a 300 ft.-span
: ) K ) ‘ filled arch if the depth of fill h is 6 ft. at the center and the rise r
_P (1 N r) — 2.820(1 + 0.821) — 5,140 Ib. per sq. ft. The resul- ! is 50 ft. If the fill weighs 120 lbs./cu. ft., determine the force H,
V, and T for a one-foot width of arch rib.

tant is located within the base, since x < 18.5','which indicates
that the dam is stable and will not overturn.

5. Dt_atem'line the base pressures p, and p, for a dam 30 ft. high if the
width is 3 ft. at the top and 14 ft. at the bottom. The depth of

water retained is to be 24 ft. and the weight of masonry is 145

Exercise 8.3
Structural Analysis _ Ibs./cu. ft.

1. Calculate the stresses in the members of trusses shown below in
Figures 8.14 (a) and (b). Indicate whether the stresses calcu-
lated represent tension or compression.

B
A A J
/ A
g > : {
4 g * 45007 5400% 78007
A 1—0—-4@16' 164"
75007
(&) (b}

Figure 8.14
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APPLICATIONS TO MECHANICAL ENGINEERING

The subject of mechanical engineering is so diversified that it
would be quite impossible to cover even a small portion of the many
types of problems which may readily be solved with the aid of the
slide rule. Although many of these problems are simple and require
only the use of the basic scales designed for multiplication and
division, there are others which require considerable skill in the
use of the more complicated scales. It is the purpose of this chapter
to acquaint the student with some of the latter and to illustrate
their solution with the Versalog II Slide Rule.

There are several fields of mechanical engineering in which an
abundance of problems exist whose solutions are particularly
suited to the slide rule. Of these, perhaps the most important are
thermodynamics, heat transfer, and machine design. In this
chapter, each of these branches will be treated separately, and a
few representative examples, together with their solutions, will be
included. The treatment assumes that the student already possesses
a basic knowledge of the use of all scales, and that he is familiar
with the technique of setting decimal points and of performing
other commonly employed operations. In studying the illustrative
examples, the student is urged to follow the operations listed, and
at each step to call to mind the reason why the particular opera-
tion was employed, and why it accomplishes its objective.

9.1 THERMODYNAMICS

The science of thermodynamics is related to the behavior of gases,
liquids, and solids when under the influence of the interchange of
heat and mechanical energy. A large number of problems in which
the use of the log-log scales are particularly valuable are those
involving the behavior of perfect gases undergoing changes in state.
The derivation of the equations expressing the various relation-
ships existing between such properties as pressure, absolute tem-
perature, volume, internal energy, enthalpy, and entropy can be
found in any standard textbook on thermodynamics. These equa-
tions are usually derived for certain commonly employed processes
such as constant velume, constant pressure, isothermal, isentropic,
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and polytropic. InTable I, Figure 9.1 are presented those equations
which have been found to be useful to the mechanical engineer. The
nomenclature employed is expressed in engineering units.

Y- Bl | St | Al EEs
%E”?:E 2 kS o 2 2 A study of Table I shows that all equations listed fall into one or
SE%A g g = g a more of the following three categories: equations involving powers
— — — + of numbers; equations involving the natural logarithms of numbers;
Ao B B & = g and equations involving simple multiplication or division.
gEdal | L . ' L v
8 g N ) Eg; g % o Of these, only the first two are sufficiently difficult to require special
© H = 5 5 g €3 treatment in this chapter.
g3
T ls g“ ) & & £ g | EEs EQUATIONS INVOLVING POWERS OF NUMBERS
g gnfd:i 2 E!; é = é é §§§ E;é%’;% Solution of these equations is accomplished by the use of the
£ ég:: g g $ g AT log-log scales, LL3 to LLO and LL/3 to LL/0. In many cases, several
5 i %%g%%gg alternative solutions of equal accuracy and speed will suggest
B | 0 = E:;' S themselves. At first the student should employ more than one
g |83, QI‘ ; e g | rmmesee method using the other as a check. After proficiency in all methods
& %‘6?,3-5 = =7 n £ =7 is achieved, the student should be able to setect for himself the one
% E38 & i g E J_L, best suited to the particular circumstances.
&) - . .
- — Example 9.1 For a polytropic process, solve for P, if n = 1.21,
] T = e Al e = s .
we | 2 . 5 o sa & P, = 120 psia, and V, = 3.17V,. Answer, 29.7 psia.
o <3 ) - = = -
SR - N S 5 s B TR oty o B, 120
& = g g B g S Solution rom Table I write P, = Tz—n BRI
? : ) *
2 r - : Vi
< o w E " A~
& 1 I .::I“>" 1 -%E EE T 3 Set left index of C opposite 3.17 on LL3. Move hair-
Z 2 F BiE g o ~ § line to 1.21 on C and read 4.04 on LL3. Set 120 on D
B E Sl Gie S f i and slide 4.04 on C. Read 29.7 at the right index
- Tl [ 32, & £C.
% RV P = L"T'} : lcl-} T;F:” g 8 Alternate " Van 1\
e aa) | BECARTIR T B Solution  Write, P,~ P,({!) = 120(377) " -
1 _|I| . ~||| .| L% 2, V. 3.17
col A 135 3% 120 X 0.31542
s | T 22| 382 S5 )
g 5
7 | I | L 5. g Set hairline over 3.17 on LL3 and read its reciprocal
8 SE gl | mle | 325 ASEE 0.315 on LL/3. Slide the left index of C to the hair-
. B 22 2 gia2 line and move hairline to 1.21 on C. Read 0.247 on
il D - A | B g azE LL/3. This is 0.315'%". Set left index of C to 120 on
s 2 Hlee8| B9 £4 §§ se & G338 D and move hairline to 0.247 on C. Read 29.7 on D.
TREEIELLIE L E R B AR
25 |Sglised| & | BL | s | 70T

Figure 9.1
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\

Example 9.2 For a polytropic process, find n 1f =723 and F* V.o
1

Solution

5.63. Answer 1.145

From Table I write, 5 e (Xg)“ or 7.23 = 5.63"
P, \V,

Set left index of C opposite 5.63 on LL3. Move hair-
line to 7.23 on LL3 and read n=1.145 on C.

Alternate Solution An alternate, but much less rapid solution,

Example 9.3

Solution

may be obtained by using natural logarithms. Write

log.7.23 =n log.5.63 or n = i%%

Find log.5.63 by setting hairline to 5.63 on LL3 and
reading 1.73 on D. Find log.7.23 by setting hairline
to 7.23 on LL3 and reading 1.98 on D. Slide 1.73
on C to hairline and read 1.145 on D opposite left
index of C.

The same result could have been obtained using
common logarithms and reading their values on the
L scale. Thus

_ log,,7.23 _ 0.869

~Tog,5.63 075  1°
For a polytropic process find V if 5 T — 0.94 and
1 l
n= 1.037. Answer 5.30
T1 VZ (V2)0.037
T, (VI) . Therefore, & 0. 9 1 \v,

The simplest solution is to find the number which,
when raised to the 0,037 power, will give ﬁ.'Set

hairline to 0.94 on LL/1 and read its reciprocal
1.0637 on LL1. Slide 0.037 on C to the hairline and
read 5.30 at the left index of C on LL3. The choice
of the correct LL scale on which to read the answer
is governed by the position of the decimal point. In
this case, since the decimal point is in the second
place to the left of 3.7, it is necessary to move

(Preferred)
Alternate
Solution

Example 9.4
Solution

Example 9.5

Solution
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upward two scales to the LL3, in order to obtain
the correct result.

¥ -
V., \0.94 - \0.94

Opposite 0.94 on LL/1 set right index of C. Move
hairline to 27 on C and read 5.30 on LL3. The first
operation above was equivalent to setting the right
index of C opposite 1.0837 (the reciprocal of 0.94)
on D. The second operation raised 1.0637 to the 27
power. Again, the choice of LL scale on which the
answer is read is determined by the position of the
decimal point. In this case, it is clear that the
answer would not be on the LL2 scale because this
would give 1.1815, which would be the answer had
the exponent been 2.7 instead 27.

Solve example 9.3 if n = 1.37. Answer 1.1815

The solution in this case is identical with that of
example 9.3 except that the exponent by the first
method becomes 0.37 instead of 0.037. By the second
method it becomes 2.7 instead of 27. The answer is
1.1815 instead of 5.30 and is read on LL2 instead
of LL3.

Find the change in internal energy for air under-
going the following isentropic compression. P, = 15
psia, P, = 60 psia, T, = 520 deg. R, w = 13 Ilbs,
¢, = 0.1715 btu/lb, F, k = 1.40.  Answer 564 btu.

From Table I write U, ~ U, = we (T, — T,) and T,
k=1
_ &) .
- 15
k-1
P\ &
Then U, — Ul we, T [(—2) - 1}
P,
14 1
1
=13 x 0.1715 X 520[((1;g) = 1]

— 1160[4{].286 _ l:l
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EQUATIONS INVOLVING NATURAL LOGARITHMS

Most thermodynamic equations involving logarithms can be re-
duced to one number multiplied by the natural logarithm of another.
The solution of this type of problem is quite simple, since the natural
log of a number can be read directly on the D scale opposite the
number on one of the LL scales. If the number is greater than one,
the logarithm will be positive and will have the decimal point
indicated by the symbol at the right of the scale. If the number is
less than one, the logarithm will be negative with the decimal point
also indicated by the symbol. The multiplication process which
follows is one of simply setting the left or right index of the C scale
(whichever is appropriate) opposite the value of the logarithm on
the D scale and moving the hairline to the number by which the
logarithm is to be multiplied. The final result is read on the D scale
and given the appropriate sign and decimal point.

In the interest of accuracy and ease of computation, it is often an
advantage to reduce the problem to its simplest form before per-
forming the final operations. This will result in a minimum of effort
in obtaining the solution. An example illustrates this point.

Example 9.6 Find the change in entropy per lb. of gas resulting
from a polytropic expansion for which n = 1.32 if
V, = 6V,. Assume ¢, = 0.18 btu/lb F, w =1 and
k = 1.39. Answer 0.0226 btu/deg. R.

Solution Without reducing to its simplest form, the solution
cculd be found as follows:

T, k — V!
8, — 8, = we,log, f = we, (ﬁ)loge(v;)

e 1.39 —1.32 13082 — 13032
— 0.18(12557%) log.() = -0.0394 log.( 1)

Set left index of C opposite 6 on LL3 and move
hairline to 0.32 on C. Read 0.5635 on LL/2. This is
equal to ¢ raised to the 0.32 power. The logarithm
of this is read at the hairline on the D scale, but
with a negative sign, since it is for a number less
than one.

From the symbol at the right of LL/2, it is clear that
the logarithm read on D is —0.574. Set the right
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index of C to the hairline and move the hairline
to —0.0394 on C. Read 0.0226 on D.

Alternate Solution. By further mathematical manipulation, the
solution can be reduced to the following, which is
the preferred method.

8, — 8, = —0.0394 log, (})** = 0.32 x 0.0394 log,
= 0.0126 log. 6

Set left index of C opposite 6 on LL3. Move hairline
to 0.0126 on C and read 0.0226 on D.

Example 9.7 Find the work of an isothermal expansion of 7 1bs.
of hydrogen gas from a volume of 500 ft* to 10,000
ft?. The temperature is 80°F (540 deg. R.). The gas
constant for hydrogen is 772. Answer 11,250 btu.

Solution Referring to Table I and noting that BV one may
P 1

’4

wRT . P, 7x772x540  V,

write 1w2 = T lOgeE _+—-'-7—'—7-8~— loge-\—r—']- =
T x 772 x 540
778 log,20.

Set 778 on C opposite 20 on LL3. Move hairline to
772 on C. Turn rule over and move 540 on CI under
hairline. Move hairline to 7 on CF and read 11,250
on DF.

Example 9.8 Find the change in entropy for a constant pressure
process in which 4 lbs. of air are compressed at

constant pressure from a volume of 50ft® to 10 ft3.
¢, for air = 0.24 btu/lb F. Answer —1.545 btu/deg. R.

Solution Noting from Table I that 3’ = %—2, the following can
1 1

be written S-; — 8, = wg, log, %‘) =4x0.24 log, _;% -
1

—4 x 0.24 log, 5.

Set 4 on CI opposite 5 on LL3. Move hairline to
0.24 on C and read —1.545 on D.




140 THERMODYNAMICS HEAT TRANSFER 141
Exercise 9.1 CONDUCT!ON
Thermodynamics Conduction may be defined as the flow of heat through a substance,

1. Solve the following exercises, using alternate methods when the particles of which remain in a fixed position relative to each
feasible. Find T, for an isentropic process for which P, = 14.7, ' other. It is usually associated with the flow through solids, although,
P,=49.25 k = 1.40. in the absence of convection currents, heat can also be said to flow

2. Find P, for an isentropic process for which P, = 15, T, = 520, ; by conduction through liquids and gases. The flow of heat by con-
T, = 360, k = 1.30. ‘ duction is directly proportional to a constant called the thermal

3. Find P, for a polytropic process for which P, = 400, T, = 625, conductivity multiplied by the temperature gradient and the cross
T, = 500, n = 1.05. sectional area perpendicular to flow, and inversely proportional to

the distance through which it flows.

4 Findnif 2= 75 and o= 4.4,

Pl V2 ) .
5. Compute the heat added to 1 1b. of air which undergoes a poly- For a slab, the flow may be expressed by the simple equation:
tropic expansion with n = 1.16 from a pressure of 200 psia to kAAL
42 psia. The initial temperature is 900 deg. R. For air ¢, = Q= T
0.1715 btu/lb F and k = 1.40.

(1)

6. Find V, for a polytropic compression of a gas if n = 124, T, = where
600, T, = 800 and V, = 16. Q = rate of flow of heat through the slab, btu/hr

7. Find the change in entropy per lb. of air resulting from a k = thermal conductivity of the siab material, btu/hr F ft
polytropic expansion for which n = 1.12 if V, = 18V,. Assume A = cross sectional area of slab perpendicular to the flow of
c.=0.1715and k= 1.4, heat, ft?

8. Find the work of isothermal compression of 10 Ibs. of nitrogen At = temperature difference across the slab, F
from a volume of 36 ft* to a volume of 4 ft*. The temperature is t = thickness of slab, ft

60° F. Gas constant for nitrogen = 55.2.

9. Find the heat added per lb. of air undergoing an isothermal
expansion from a pressure of 140 psia to 40 psia. The tem-
perature is 600 deg. R. R = 53.3.

10. Find the change in entropy for a constant volume extraction
of 1000 btu of heat from 15 lbs. of oxygen originally at 760 deg.

A problem of frequent occurrence in mechanical engineering is the
the determination of the flow of heat from an insulated pipe. For
this case equation (1) must be modified to conform tc the fact that
the insulation is curved and that the area perpendicular to flow is
greater at the outer surface.

R. ¢, for Oxygen = 0.155 btu/lb F. The equation for this case is:
11. For an isothermal compression the change in entropy of 3 lbs. of
carbon dioxide is —0.37 btu/deg. R. If the initial pressure is Q= 2mkLAt (2)
15 psia, what is the final pressure? R for carbon dioxide is logegi
35.1 ft/deg. R. D,
where
9.2 HEAT TRANSFER Q = heat loss, btu/hr

L = length of pipe, ft
At = temperature difference between inner and outer surface of
the insulation, F
D, = outer diameter of insulation, ft
D, = inner diameter of insulation, ft

The mechanisms by which heat may be transferred are three, con-
duction, convection, and radiation. In this section each of these will
be treated separately for the case of steady flow. The case of tran-
sient flow requires a high degree of mathematical training and is
beyond the scope of this chapter.
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Example 9.9 Find the heat loss in btu per hr from a pipe of 8
inches outside diameter if it is 50 ft. long and cov-
ered with 2 inches of insulation having a thermal
conductivity of 0.035 btu/hr F ft. The inner tem-
perature is 850°F and the outer temperature is

150°F. Answer 18,950 btu/hr.
Solution From equation 2, write
_ 27 % 0.035 x 50(850 — 150)
Q= 12
log. =
8

Divide 12 by 8 mentally to obtain 1.5. Set hairline
at 1.5 on LL2 and read log, 1.5 = 0.406 on D. Sub-
tract 150 from 850 mentally to obtain 700. Not-
ing that 2 X 50 = 100, the problem reduces to
n(wo———w@). Set hairline to 70,000 on D and
move 0.406 on C to the hairline. Move hairline to
0.035 on C and read 6030 on D. This may be mul-
tiplied by # by simply reading 18,950 on DF at
the hairline.

CONVECTION
Heat flow by convection is an extremely complex subject since the
mechanism of transfer is largely one of heat being conveyed from
one portion of a fluid to ancther by physical mixing. The interaction
of forces creating mixing and the consequent transfer of heat de-
pends on many factors such as the density, specific heat, viscosity,
thermal conductivity, temperature, and velocity of the fluid, as
well as upon the geometry of the apparatus in which the fluid is
contained. Many cases of practical importance have been studied,
but perhaps the most useful to the mechanical engineer is the rate
of flow of heat to or from a fluid flowing inside a pipe or circular
conduit. This problem has been studied by Dittus and Boelter of
the University of California. Their work indicates that the rate of
heat interchange between the inner surface of pipe and a fluid
flowing inside the pipe is proportional to a coefficient of conductance
h. The rate of heat interchange in btu per hr may be computed by
multiplying h by the inner surface area of the pipe and by the
temperature difference between the inner surface and the fluid.
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The value of h is given by the equation

B 0.023%(—EDV )U'B(ﬂfﬂ)" (3)
u

where

h = coefficient of conductance, btu/hr F ft?

k = thermal conductivity of the fluid, btu/hr F ft?

D = inside diameter of pipe, ft

V = mean velocity of fluid inside pipe, ft/hr

p = density of fluid, lbs/ft?

= viscosity of fluid, Ibs/hr ft

¢, = specific heat of the fluid at constant pressure, btu/lb F

n = an exponent equal to 0.4 if the fluid is being heated and 0.3 if
the fluid is being cooled.

The term D—ZB is a dimensionless group called Reynold’s number

and occurs frequently in heat transfer and fluid flow calculations.
It is sometimes very large and for this reason falls beyond the range
of the LL3 scale on the slide rule making it necessary to apply spe-

cial methods when raising it to a power. The term £S s called

k
Prandtl’s number. It is usually guite small; often less than unity.

Another group called Nusseit’s number can be formed as h—l? The

use of such dimensionless groups is widely employed in the theory
of heat transfer and fluid flow. These groups usually occur raised
to some power, thus making the slide rule particularly applicable
to their solution.

Example 9.10 Find the coefficient of conductance of superheated
steam flowing to a turbine with a velocity of 150
ft/sec. The inside diameter of the pipe is 6 inches.
The steam is under a pressure of 1,000 psia and
temperature of 800°F. The constants needed for
the problem are k = 0.065 btu/hr F ft, p = 1.451
lbs/ft?, = 0.104 lbs/ft hr, ¢, = 0.61 btu/lb F.

Answer 548 btu/hr F ft2.
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Solution Since the steam is losing heat and therefore being
cooled, the value of n will be 0.3. Hence, equation
(3) becomes

. .0.065/6 _ 150 X 3600 x 1451\
h=00237g (12>< 0.104 )
(12)
o) ®
0.104 X 0.61) *
( 0.065 )

@

The solution can be obtained by treating the indi-
vidual terms of the equation indicated by the
encircled numbers separately. Then solve by the
usual methods.

h = 0.00299 x 3,770,000"% x 0.976"*
@ ©) @

Since 3,770,000 is beyond the range of the LL3 scale,
it must be divided into parts of the operation of
raising to the 0.8 power. The choice of division is
not important so long as it is convenient and will
accomplish the desired result. The method which
involves the least work is to find the square root
of the number, raise this to the 0.8 power, and
square. Thus, 3,770,000°% = 1940°% x 1940 =
430¢ = 184,900. To perform this operation, move
the hairline to 2,770,000 on D and read its square
root 1940 on R,. Set right index of C to 1940 on LL3
and move hairline to 0.8 on C. Read 430 on LL3.
Set 430 on R, and read 184,900 on D. To find
0.976%3 set left index of C opposite 0.976 on LL/1
and move hairline to 0.3 on C. Turn rule over and
read 0.99275 on LL/0. Substituting these values
into the equation for h gives

h = 0.00299 x 184,900 x 0.99275 = 548 btu/hr F ft*

RADIATION
Heat may also be transferred from one surface to another by radia-
tion. The mechanism of radiation differs from that of convection and
conduction inasmuch as the heat is transferred without benefit of
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any intervening substance. It is radiated just as light except that
the wave lengths are usually much greater. The general relation
expressing the interchange of heat between two surfaces may be
expressed by the equation.

Q=0.173 F, F, A[(—%‘J— (1%)"] (4)

where

Q = heat transferred by radiation, btu/hr

F, = an angle factor which depends upon the geometry of the
surfaces and their relative positions, dimensionless

Fy = an emissivity factor which depends upon the ability of the
surfaces to absorb and emit energy, dimensionless

A = area of one of the surfaces, the choice of which depends upon
the method of evaluating F,, fi2.

T, = absolute temperature of the warmer surface, deg. R. =
460+ F

T, = absolute temperature of the cooler surface, deg. R.= 460+ F

An illustration will show the method of solution for problems of
this type.

Example 9.11 Find the heat transferred per square ft of surface
of one of two parallel plates if the angle factor is
unity and if the emissivity factor is 0.154. The
temperature of the two surfaces are 400°F and 60°F

respectively. Answer 126.5 btuw/hr ft*
Solution Q=0173x1x 0_154[(460 + 400)“ _
100
460 + 60\*
(_100 ) ] = 0.02665 [8.604 = 5_204]

The values of 8.60* and 5.20° can be obtained by
the use of the log log scales, by direct multiplica-
tion, or by the use of the R scales in conjunction
with the C and D scales. The use of the log log
scales is fast, but not always as accurate.

Solution using the LL seales:

Set left index of C opposite 8.6 on L3 and move
hairline to 4 on C. Read 5500 on LL3. This is the
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value of 8.60*. By similar methods, find 5.20° =
730. Then @ = 0.02665(5500 — 730} = 0.02665 x
4,770 = 127.2 btu/hr ft*.

Solution using the R and A scales:

Set hairline on 8.6 on R,. Read 5480 on A. This is
8.60*. Notice that 74 on D is 8.6%?. Similarly, set
hairline on 5.2 on R, and read 731 on A. Then
Q= 0.02665(5480 — 731) = 0.02665 X 4749 = 126.5
btu/hr ft.

The latter solution is the more accurate of the two
and to be preferred.

HEAT EXCHANGES

Various types of heat exchanger equipment are frequently employed
in mechanical engineering applications. The most important of
these are surface condensers, feedwater heaters, refrigeration con-
densers and evaporators, and counter and parallel flow heat ex-
changers. Their primary purpose is to transfer heat from one fluid
to another across a barrier such as a pipe wall or some other sepa-
rating surface. If the over-all coefficient of heat transfer is known,
it is possible to compute a logarithmic mean temperature difference
between the two fluids that can be multiplied by the surface area
separating the fluids, and by the over-all coefficient, to obtain the
rate of heat transfer.

Thus
Q = UAAt y - (B)

where

Q = rate of flow of heat from one fluid to the other, btu/hr
U = over-all coefficient of heat transfer between the two fluids,
btu/hr F ft*.
Aty = logarithmic mean temperature difference between the two
fluids, F.
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types of heat exchanger equipment. At,, = logarithmic mean

temperature difference.




148 HEAT TRANSFER

The relation between the two fluid temperatures as a function of
the surface area for the various types of heat exchanger equipment
is illustrated in Figure 9.2. The equation expressing the logarithmic
mean temperature difference is the same in all cases and is given by

the relation Aty = Q_,—TGZ (6)
loge(gl)

where

O, = temperature difference between the two fluids at inlet as
indicated in Figure 9.2, F.

O, = temperature difference between the two fluids at outlet as
indicated in Figure 9.2, F.

For surface condensers, feedwater heaters, and refrigeration con-
densers and evaporators, the fluid which is condensing or evapo-
rating remains at a constant temperature. Hence, only one of the
fluids changes temperature as is clearly indicated in Figure 9.2,
(a) and (b). Since equation (6) holds for all cases, it is important in
engineering work. Its use in conjunction with equation (5) is illus-
trated by the three following examples.

Example 9.12 In a large steam surface condenser, 5,000,000
lbs/hr of circulating water is raised in temperature
from 60°F to 70°F. If the over-all coeflicient of heat
transfer is 720 btw/hr F fi? and if the condensing
steam temperature is 79°F, what will be the re-
quired surface area? The specific heat of the water
may be taken as 1 btu/lb F. Answer 5190 ft2.

Solution From equations (5) and (6)

Y
_Q _ Q log, 8,
UAtLM U(el = 92)

Since the condensing steam temperature is con-
stant, the value of ©, — 0, will be equal to the rise
in temperature of the water. Hence, Q= 5,000,000
{0, — 0,). Substitution of this value into the above

equation gives:
5,000,000 79 — 60 _ 6,000,000 19
2 log, < log, &

720 *79—-T70 720 ¢ 9

A

A=

Example 9.13

Solution
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Opposite 19 on DF, set 9 on CF and read 2.11 on D
at left index of C. Move hairline over 2.11 on LL2
and slide 720 on C to hairline. Move hairline to
5,000,000 on C and read 5190 on D.

A feedwater heater raises the temperature of
216,000 lbs of water per hr from 92° to 175°F. If
the over-all coefficient of heat transfer is 528
btu/hr F ft? and if the surface area is 769 ft*, what
will be the temperature of the condensing steam

t.?

From equations (5) and (6)

0, — -
AtLM = ! eelz = '[% or loge %; = —UA(eé 62)
.5

Since the specific heat of water is unity, and since
the condensing steam temperature is constant,
Q = 2186,000(0, — O,). Hence

t.—92 528X 769 _

O, _
log. 5, = 108: 1 —775 = 216,000 ~ 1 '®8
or
.- 92 _ el 88
% 175

The value of e'** may be read directly on LL3
opposite 1.88 on D to obtain 6.55. Then
t. — 92 _ (8.55 x 175)— 92

————=65bort. = = 190°F.
te— 175 5.56

Example 9.14 A fluid having a specific heat of 0.65 btu/Ib F flows

through a counter flow heat exchanger at a rate of
520 lbs/hr. A second fluid having a specific heat of
0.72 btu/lb F flows through the exchanger at a rate
of 714 lbs/hr. (a) If the first fluid enters at 560°F
and leaves at 318°F, what will be the temperature
of the leaving fluid if it enters at 194°F? (b) What
will be the logarithmic mean temperature differ-
ence? Answer 353°F and 162°F.
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Solution (a) The heat absorbed by the cooler fluid must equal
that surrendered by the warmer fluid. Hence, the
following heat balance can be written

520 x 0.65(560 — 318) = 714 X 0.72(t, — 194)
or

b= 520 X 0.65 X 242
= 714 x 0.72

(b) Referring to Figure 9.2, it is clear that O, =
560 — 353 = 207°F, and O, = 318 — 194 = 124°F.
Then

+ 194 = 1594 194 = 353°F.

At = 01— 0 _207-124_ 83

: 207\ 207
log. o, log, 194 log, 124

Opposite 207 on D, set 124 on C, and read 1.669
opposite left index of C. Set hairline to 1.669 on

LL2 and read 0.512 on D. This is loge%.z. Set hair-

line to 83 on D and move 0.512 on C to the hairline.
Read 1.62 on D opposite the left index of C.

Exercise 9.2
Heat Transfer

1. Find the heat loss in btu/hr from a pipe 42.8 ft long covered with
insulation 1.5 inches thick having a thermal conductivity of
0.032 btu/hr F ft. The outside diameter of the insulation is
6 inches and the temperature drop across the insulation is 227°F,

2. Compute the coefficient of conductance of water flowing through
a condenser if the tubes are % inch inside diameter. The velocity
of flow is 8 ft/sec. The physical constants are k= 0.35 btuw/lb F ft,
p = 62.3 lbs/ft?, u = 2.37 lbs/ft hr, and ¢, = 1.00 btu/lb F.

3. Seven hundred lbs/hr of a fluid having a specific heat of 0.85
btu/lb F are passed in a heat exchanger counter flow to 600 lbs/hr
of a fluid having a specific heat of 0.94 btu/Ib F. If the first fluid
enters at 500°F, and leaves at 200°F, what will be the leaving
temperature of second fluid if it enters at 100°F? Compute the
logarithmic mean temperature difference and the required area
if the over-all coeflicient of heat transfer U = 473 btu/hr F ft*.
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4. A surface condenser having a surface area of 40,000 ft* circulates
43,000,000 lbs of water per hr. The water increases in tempera-
ture from 70°F to 82°F. If the over-all coefficient of heat transfer
U = 638 btu/hr F ft?, what will be the temperature of the con-
densing steam?

5. A bare steam pipe passes through a room whose walls are at a
temperature of 70°F. If the surface temperature of the pipe is
325°F, find the rate at which heat is lost to the walls per square
ft of pipe surface as a result of radiation. For this case assume
F, =1.00 and Fg = 0.90.

9.3 MACHINE DESIGN

In this section a few selected examples will be used to illustrate
typical problems encountered in machine design practice. The prob-
lems are selected on the basis of their illustration of certain points
regarding the operation of the slide rule rather than on frequency
of occurrence.

RECTANGULAR AND POLAR MOMENTS OF INERTIA,

RADH OF GYRATION
An important problem in machine design is the calculation of the
stress induced in beams and machine members by the application of
bending moments and torsional forces. The methods required for
the complete solution of these problems are beyond the scope of this
chapter. However, an important item that often enters into the
solution, and which must be computed, is the moment of inertia of
the cross section of the beam or machine member. When taken about
a horizontal axis lying in plane of the cross sectional area, and
passing through its center, one obtains the rectangular moment of
inertia I. When taken about an axis passing through the center of
the cross sectional area, but perpendicular to the plane of the area,
one obtains the polar moment of inertia Ip.

Also of importance is the radius of gyration. It is that radius which,
when squared and multiplied by the cross sectional area, gives the
moment of inertia. In Figure 9.3, formulas for computing the two
moments of inertia and their corresponding radii gyration for sev-
eral widely employed cross sections are presented. A few examples
of their solution, illustrating principally the use of the K and R
scales follow.
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Example 9.15 Find the polar moment of inertia and polar radius

of gyration of the rectangular cross section in

3 ' Figure 9.3 if h and b are 2.22 and 1.50 inches re-
7 ‘ spectively. Answer 1.99 in*, 0.774 in
| el . . L
5 g X o i; LS Solution Write the polar moment of inertia as
3.5s [Hr | s o | |Ye 5
Eogﬁ %4 = 'vl$ ) ¢|l> " _bh(b2+h2)_b3h[1+(h)z]_
S TS »= 127 12 b/ |~
8 7
g =] 1.50° x 2.22 (2.22)2]
2 kg 12 |1 \150 |
£ a
..:' = Opposite 2.22 on D set 1.50 on C. Opposite left A
=| = = index of C read 1.48 on D. Move hairline to left I
3| § o £ :
“l 8 3 :'_T'_ ] 5 index of C and read 2.19 on A This is(2'22)~ Add
£l Sehs| 4 o |e Ba g a;[N 1.50/.
i & = = 5 a] 1 one to 2.19 mentally obtaining 3.19 and set hair-
s & . * h line to 3.19 on D. Move slide so that 12 on C is at |
g E the hairline and then move hairline to 2.22 on C ‘
= and read 0.59 on D. Find 1.5(° by setting hairline
wa 5 to 1.5 on D and reading 3.375 on K. Opposite 0.59 ‘
53 -é"s g /s % on D, set 3.375 on CL. At left index of C read the |
z 3 | ‘
o Eé .‘:{m ‘!E alE it g* el answer 1.99 on D. H
k géw i S Write the polar radius of gyration as :l
£ f
e 7 7 |
g s L s h\? (2.22)4 :
. e frrr_y 1+ () s 1+ (T50 ‘
| =524 x < 12
% | wE3 - ) o 12 12
¥ dgE~ BF | 4F D RO A | fl
E T
5| &7 a L 1.22\
E By the same methods as above find 1 + (m) =
B .
g 3.19. Set hairline to 3.19 on D. Move 12 on C to the
"‘ hairline and move hairline to the left index of C.
R T ’—v—’ [‘—-*3—’ Read 0.5155 on R,. Set the hairline of C to 0.5155
3 T % l ,—v on D, slide 1.5 on C to the hairline. Read the
& N\ o n 5 answer 0.774 on D at the right index of C. As a
= L= > >4 ' check R,*x bh = I,. Hence, 0.774* x 2.22 X 1.50=
; 1.99.
Example 9.16 Find the rectangular radius of gyration of the
hollow rectangular section if B, H, b and h are 3.2,

4.6, 1.8 and 2.6 respectively. Answer 1.524 in®
Figure 9.3
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Solution For this problem it is easiest to solve for each
member under the radical separately using the R
scales in conjunction with CI and D scales. Thus
BH =32 x46°"=32x46 x 4.6°= 312

To perform the above operations, set hairline to
4.6 on R, and read 21.16 on D. This is 4.6 Slide
4.6 on CI to the hairline and then move hairline
to 3.2 on C. Read 312 on D.
bh*=1.8 x 2.6 X 2.62= 31.65

Set hairline to 2.6 on R, and read 6.76 on D. This
is 2.6°. Slide 2.6 on CI under hairline and move
hairline to 1.8 on C. Read 31.65 on D. The denomi-
nator under the radical is found in the usual man-
ner. 12(BH — bh) = 12(3.2 x 4.6 — 1.8 X 2.6) =
12(14.72 — 4.68) = 120.5 then

312 — 31.65 _ /280.35
120.5 124.8

Opposite 280.4 on D, set 120.5 on C. Move the
hairline to left index of C and read 1.5240on R,.

Example 9.17 Find the width of an elliptical section of height
2.9 inches which will give a rectangular moment of
inertia equal to 0.584 in*. Answer 1.60 in

. rradb ~ \/64 I 4 x 0.584
Solution = and a = TX29 1.60

Set hairline to 64 on DF and shift to lower group of
scales to divide by «. Slide 0.584 on CI to hairline,
move hairline to 2.9 on C. Read 4.1 on D at hair-
line. Set hairline to 4.1 on K and read ¥4.1 =
1.60 on D.

= 1.50

BELT LENGTH AND TENSION
The use of the S scale together with certain other manipulations
may be illustrated by the equations for belt length and belt tension.
Figure 9.4 is an illustration of two pulleys over which an open belt
is stretched.

Figure 9.4 is an illustration of two pulleys over which an open belt
is stretched.
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Figure 9.4—-0Open Belt Over Two Puileys.

The equation for length of belt required is

L= \/402—(D—d)2+w(D;d)+(D—d) sin™ %E—d D

where sin™! D2—6d must be in radians and
L = belt length, in
D = diameter of larger pulley, in
d = distance of smaller pulley, in
C = distance between pulley centers, in

The angle of contact between belt and smaller pulley is given by the
expression

o =180 — 2 sin™! %E—d (8)

Expressed in radians a = 57 573 radians.

The tension developed by the tight side of the belt in terms of that

on the loose side is
T, = T,e* ¢e))

In equation (9)

T, = tension on tight side, lbs
T, = tension on loose side, Ibs
u = coefficient of friction between belt and pulley
= angle of contact between belt and smaller pulley, radians
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The effective torque for producing power will be (T, —T,) % inch Ibs

so the horsepower developed will be

where

(10)

oo 27N = Tyd _ NA(T, — T))
P= 19X 33000 x 2 126,000

N = revolutions per minute of the smaller pulley
d = diameter of the smaller pulley, in

Example 9.18 (a) Compute the required length of an open belt to

Solution

stretch between two pulleys 60 inches apart if
their diameters are 22 and 8 inches. (b) Compute
the angle of contact of the belt on the smaller
pulley in degrees and in radians. {c) If the belt is
to transmit 20 hp and if the smaller pulley is to
operate at 800 rpm, what will be the tension on
the tight and loose sides of the belt. Assume p =
0.30.
Answer 168 in, 166.6 deg., 2.91 radians,
676 Ibs, 282 lbs

(@) L= V4 x60°— 22— 8)2+w(222+ 8) i
/228
(22 — 8)sin ‘(2 = 60)

this may easily be reduced to the following

14 [V 14
L—14 (14) 1+ 7 X 15+ 14 sin"t 2ot
® ® ®

@ Opposite 120 on D, set 14 on C and read 73.5 on
2
A opposite right index of C. This is (1%) . Subtract

one from this mentally to obtain 72.5. Set hairline
to 72.5 on D and read 8.51 on R,. Set right index of
C opposite 8.52 on D and move hairline to 14 on C.
Read 119.2 on D. This is the value of the first term.

@ Set hairline to 15 on D and read 7 x 15 = 47.1
on DF.
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® Divide 14 by 120 and obtain 0.1167. Set hairline
to 0.1167 on C and read 6.70 degrees on S. This is
sint % in degrees. Now multiply 14 by the angle
6.70° expressed radians. Set left index of C at 14
on D. Move hairline to 6.7 (.67 on rule) on Sec T
SRT scale and read 1.64 on D. Note, reading on C
scale is .117 radians. This is the third term. Add-
ing the three terms gives

L=1192+ 471+ 1.64=167.94 = 168 in.
{b} The angle of contact will be

; D-d ; 14
o -1 o, el | i
a° = 180 — 2 sin 5C —180v2sm‘120—

180 — 2 X 6.70 = 166.6 deg.

Set hairline to 166.6 on D and move 57.3 {r on C
scale) to hairline. Read « = 2.91 radians on D
opposite right index of C.

(¢) From equation (10) the difference in belt ten-
sions can be computed

_ - _ 126,000 hp _ 126,000 X 20
T -T.= "Ng "= 800 — 394 Ibs

also T,

T;

— @ MB — g0.30 % 1Bl — @0.873

Set hairline to 0.873 on D and read e = 2.393
on LL2. Then

T, = 2.393T, = 2.393(T, — 394)

or )
1. — 2:393 x 394
T T 1.393

T, = 676 — 394 = 282 lbs

= 676 Ibs

and
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DISPLACEMENT AND VELOCITY OF THE PISTON OF A

RECIPROCATING ENGINE
In Figure 9.5 is represented a crank and connecting rod similar to
that employed on reciprocating engines for the conversion of
rectilinear motion to rotary motion. With this mechanism two
important problems arise. These are the determination of piston
displacement and piston velocity as a function of crank angle O.
The two quantities may be expressed by the equations:

—_—

f - ™
sr /AN \
- =T ",{l S B

Figure 9.5— Reciprocating Engine Connecting Rod.

3
S =1l cos6 + 45 sin’6 + gG) ot © )

e 3
V= 27Nr{sin O + _11" sin © cos O + %(—Il.) sin®* O cos O +)

where

S = piston displacement, ft or inches
1= length of piston rod, same units as 8
r = radius of crank, same units as 8
O = crank angle, degrees
V = piston velocity, {ft/min or in/min depending on units chosen
forland r
N = revolutions per minute

The above equations may be solved with a high degree of accu-
racy by including the last term, but in general this may be negiected.
Example 9.19 (a) Find the piston displacement in inches and
piston velocity in ft/min for internal combustion
engine operating at 3000 rpm if © = 68 degrees,
1= 8 in, and r = 3 in. {(b) Solve the same problem,

neglecting the last term, if © = 185 degrees.
Answer; 2.37 in, 5020 ft/min, 5.99 in, —257 ft/min.
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Solution (a) S=3[1— cos 68° + § x § sin® 68°+ 4 (3)* X sin*

68°+---]andV=——2WX3;2200X3

68° cos B8° + } (3)? sin® 68° cos 68°+ - - -]

[sin 68° + £ sin

Using the S scale in conjunction with C scale both the sin and cos
of 68° are found to be 0.926 and 0.3745 respectively. The remaining
steps are simple and need not be explained in detail.

S=3[1-0.3745 + & x (0.926) + § ()* x (0.926)]
=3 [1—0.3745 + 0.161 + 0.00484] = 2.37 in.

V =4715[0.926 + § X 0.926 x 0.3745 + } x (§)* X (0.926)" x 0.3745]
= 4715 [0.926 + 0.13 + 0.00784] = 5,020 ft/min.

(b) Since sin 185° = —sin 5° and since cos 185° = —cos 5° one may
find the following from the SRT and Cos S scales in conjunction with
the C scale: Sin 185°=—sin 5°=—0.0871 (from SRT scale)

Cos 185°= —cos 5° = —0.996 (from Cos scale)
then,
S=3[1+0.996+ % x%x(0.0871)*] = 5.99 in.
V = 4715 [-0.0871 + & x 0.0871 x 0.996] = —257 ft/min.
The negative sign for velocity in this case simply means that the

piston in Figure 9.5 is traveling from right to left.

SCREW MECHANISMS
Screw mechanisms are used to provide large mechanical advan-
tages. The following equation gives the relation between the torque
applied, load raised and the characteristics of the mechanism.

tana+ (——f——)
T= Lr, |—-— 088/ (13)

1— (f tan a)
cos 3
where

T = torque applied to the mechanisin, in. lbs.

L = load parallel the mechanism’s axis, lbs.

rw = mean radius of the screw thread, inches

f= coefficient of friction between screw and nut threads
a = helix angle of the screw thread at the mean radius




160 MACHINE DESIGN

- SCrew lead (14)

tan o
2nr,

B = an angle measured from a plane tangent to a cylinder
formed by revolving the mean diameter and a plane
perpendicular to the teeth at the pitch diameter

Answer 106.2 in. lbs.

Example 9.20 Find the torque required to raise a 2,500 Ibs load if
the lead is Ys, the mean radius is 0.250 in., the
coefficient of friction is 0.125, and 8 = 21°.

Solutien B
1 7
18 " 125
27 x 250 in 934
T = 2,500 lhs x .250 in 1
18
. (125 % 57 o507)
E 934 i
Using the Cos scale in conjunction with the C
scale, the cosine of 21° is found to be .934. The
remaining steps are simple and need not be ex-
plained in detail.
1 125
e + it
97 934
T=62 e
1o 97 J
- 934 T = 106.2 in lbs.
CLUTCHES

Clutches are used to transmit power. Below is the formula used in
obtaining the capacity of a cone clutch.

9

T

1=l
=Y 3R Hsinte] ™ FL_]

NI
T

S

(1)

Figure 9.6.
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where
T = torque, in. lbs.
F = axial load, Ibs.
f= coefficient of friction
R, = outside contact radius, in.
R: = inside contact radius
R, — R12+ R,
H = face width, in.
a = cone angle

Example 9.21 How large a torque would a cone clutch with R, =
13.75 in. R, = 13.2 in. f= 120 in. H = 5.00 in.
a = 18° and an axial load of 150 lbs. be able to
withstand. Answer; 279.5 in. ibs.

. _ (13.75)* — (13.2)
Solution T = 150 lbs. % 0'120[3(13.48) 500 (0.309)2}

7300\ .
T= IS(m) — 2795 in. Ibs.

Exercise 2.3

Machine Design

1. Compute the rectangular moment of inertia and rectangular
radius of gyration of a circular annulus if D= 4.5 in and d =
3.44 in. Check moment of inertia by using radius of gyration
and area.

2. Compute the polar moment of inertia and polar radius of gyra-
tion of the hollow rectangular cross section if B= 4.3, H= 6.4,
b= 2.7 and h = 4.8, Check moment of inertia using radius of
gyration and area.

3. Find the length of belt required for two pulleys 72 inches apart
if one pulley is 48 inches in diameter and the other is 8 inches
in diameter.

4. Find the angle of contact for the smaller pulley in problem 3
both in degrees and in radians. If the pulley is to transmit 15 hp
at 800 rpm, what will be the tension on the two sides of the belt
assuming p = .0207
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. Find the piston displacement and velocity for a steam engine

operating at 150 rpm if © = 80 degrees, 1= 3 ft and r= 0.75 fi.
Solve the same problem for © = 12 degrees.

. In a screw mechanism, find the load that a torque of 350 ft lbs

will raise if f= .150, g8 = 33°, lead = Y12, ry = .66 in.

. If the torque to be transmitted by a cone clutch is to be 2,000

in lbs, and R, = 6.88 in, R, = 6.6 in, f= 01.80, H= 2.50 .in, o=
34.1°, what is the minimum axial load that must be applied?

CHAPTER 10

APPLICATIONS TO ELECTRICAL ENGINEERING

The purpose of this chapter is to present a few of the situations in
which the Post Versalog II Slide Rule offers unusual advantages to
the electrical engineer, and in certain cases to describe the methods
to be used in order that the maximum advantage may be realized.
Detailed attention will be given to the uses of the trigonometric
scales. It is in this area that the electrical engineer will find his
greatest satisfaction with this slide rule, but the benefits can be
realized only if the proper operational procedures are mastered.
A small investment in time spent at the outset in learning such
procedures will pay off handsomely in the long run.

10.1 THE C AND D SCALES

In electrical engineering, as in other fields, the bulk of the every
day routine work is done with the C and D scales. It is worthwhile
to devote considerable attention to the procedures cutlined in the
earlier chapters of this manual for their most economical use,
including combined operations with the CF and DF scales. Facility
in handling proportions is also of great value in electrical engineer-
ing. Illustrations follow.

USE OF PROPORTION METHODS IN PROBLEMS OF RESISTANCE
CHANGES RESULTING FROM TEMPERATURE CHANGES

Resistances of metallic conductors increase with increasing tem-
perature. The formula representing this change is most conveniently
expressed as a proportion, as follows:

R, 2345+ t,

R, " 2345+ t,

where R, is resistance at centigrade temperature t, and R, is resis-
tance at t,. The constant 234.5 is suitable for “standard annealed
copper.” Other constants are required for other materials. The slide
rule C and D scales are very convenient for the solution of any
proportion.
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Example 10.1 The field winding of a motor has 56 ohms resis-

Solution

tance at an ambient temperature of 25° C. After
full load operation for two hours the resistance is
found to be 74.3 ohms. What average temperature
was reached by the winding?

743 _ 2345+ t,
56 2595

The slide rule is used to find 234.5 + t,. The pro-
cedure using proportion is to bring 74.3 on the C
scale opposite 56 on the D scale. Then set the
hairline to 259.5 on D and read 234.5 + t, = 344.5
on C. t, = 344.5 — 234.5 = 110° C. Any of the four
quantities R,, R,, t,, or t,, may be the unknown.

For slide rule users who have to make this type of calculation fre-
quently, it is recommended that auxiliary scales be etched on the
slide rule adjacent to the C and D scales as follows:

At 2145 on C and D, put a mark and label it —20°; at 234.5,
another mark labeled 0° at 254.5, a mark labeled 20° C; and on
up every 20° to temperatures as high as required. With such
auxiliary scales it becomes possible to make the calculations
direct in centigrade degrees without adding and subtracting 234.5.

For materials other than standard annealed copper, the constant
234.5 must be replaced as follows:

Hard drawn copper 242
Commercial aluminum 236.5
Silver 243
Platinum 313
Nickel 230
Mercury 236.5
Tungsten 202

USE OF THE FOLDED SCALES FOR CIRCULAR-MIL AREAS OF
RECTANGULAR CONDUCTORS
The cross-sectional area expressed in circular-mils of a rectangular

conductor is found as follows:
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4ab . . .
Area = circular mils, where a and b are the cross-section

dimensions in mils. :

Example 10.2 A rectangular rotorconductor in an induction
motor has a cross-section § inch by § inch. Find
the cross-section in circular mils.

Solution Area = Mgﬂ == 159,100 circular mils.

Here the important thing is to make economical
use of the folded scales. In this case it is only
necessary, after noting that 4 x 250 = 1000, to
set the hairline to 5 on the DF scale and read 1591
on D under the hairline.

Exercise 10,1
The € and D scales

1. A 100 watt tungsten filament lamp operating at 2,200° C has a
resistance of 132 ohms. What is its resistance just after switching
on, before the temperature has had a chance to rise above room
temperature of 20° C?

2. The “cold” (30° C) resistance of an armature winding of copper

is 0.0345 ohms. If, under full load operation, the temperature is |
expected to rise 5(0°, what is the expected operating resistance? i

3. What is the cross-section in circular mils of a bus bar 0.25 inches |
thick and 3.5 inches wide?

10.2 THE R AND A SCALES

The square root scales are of particular value to the electrical
engineer. Examples of their uses follow:

COPPER LOSS IN WIRES AND MACHINES WHEN THE CURRENT AND
THE RESISTANCE ARE KNOWN

Example 10.3 For a current of 120 amperes in a resistance of
0.076 ohms, find the power dissipated, using
P =DR.

Set hairline to 120 on R,; move 0.076 on CI to
hairline; read result on D at the left index of C.
P = 1094 watts.

Solution
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COPPER LOSS IN WIRES AND MACHINES WHEN THE POTENTIAL
DROP AND THE RESISTANCE ARE KNOWN

Example 10.4 For a voltage drop of 9.11 volts in a resistance of
0.076 ohms, to find the power dissipated using

EZ

=g
Solution Set hairline to 9.11 on R.,; set 0.076 on C at the

hairline; read result on D at the left index of C.
P = 1092 watts.

As in Example 10.3, the R scales provide greater
efficiency than the A scale.

CALCULATIONS RELATING TO CIRCUITS POSSESSING RESONANT

QUALITIES
It is frequently necessary to evaluate VLC, VL/C, and VC/L,
where L and C are inductance and capacitance (sometimes per unit
length of circuit). Here the quantity under the radical is evaluated
by the usual methods using the C and D scales. A final setting of
the hairline transfers this quantity to the R scale where the square
root is read. The slide rule settings are simple, but the magnitudes
of the quantities involved require care in locating the decimal point.

Example 10.5 Find VLC, given L= 150 microhenries and C =80
micro-micro-farads.

Solution VLC=V15x 10" x 0.8 x 10-*=
V1.2 x 1074 =1.095 X 1077,

It should be noted that even powers of ten were
factored from the numbers to facilitate location of
the decimal point.

ROOT-MEAN-SQUARE VALUE OF NON-SINUSOIDAL

CURRENT OR VOLTAGE
When the r.m.s. values of the harmonic components are known, the
r.m.s. value of the non-sinusocidal function may be found from the
equation

E=VE:, + E%, + B2, + ete.
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Here the R scales may be used with the D scale. Full advantage is
gained from the superior accuracy of this slide rule over those
having only A and B scales.

POWER FACTORS FOR PHASE ANGLES LESS THAN 10 DEGREES
For small angles we may use the approximation

_1_%
cosx=1 )

where x is the angle in radians.

The cosine scale on the slide rule is so condensed below 10 degrees
that accurate interpolation is difficult. When a cosine of an angle
in this range must be known accurately, as is often the case in power
factor problems, this approximation may be used to advantage. The
upper limit at which this approximation should be applied is 10° =
0.1745 radians. Let us calculate cos 0.1745 according to the approxi-
mation and compare the results with a five-place table. The error
made will be the maximum, since for smaller values of x the ap-
proximation is more accurate.

x = 0.1745 radians.

x2 = 0.03045, using the R and D scales.
x2

5= 0.01523

x2
5=
From a five-place table, cos 10° = 0.98481. The difference is 0.00004.

1-— 0.98477 = cos 10°, approximately.

CIRCULAR-MIL AREAS OF ROUND CONDUCTORS
Area = I circular mils where D is the diameter of the wire in mils.
Example 10.6 A micrometer caliper shows the diameter of a

round wire to be 0.1019 inches. Find the area in
circular mils.

Solution Area = 101.9% = 10,380 circular mils. The R scale
is used in the usual way.

Exercise 10.2
The R and A Scales

1. What capacitance C in micro-micro-farads is required to tune a
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200 micro-henry coil to a frequency of one million cycles per

second?
1
(C T (2wt )2L)

9. Measurements with a "wave analyzer” on a nonsinusoidal volt-
age wave indicate the following components to be present: E, =
287 E, =57, E, =22, E,=9,E; =0, E; =0, E; = 2, all being
root-mean-square voltages. Find the root-mean-square value of
the wave.

3. Find cos 1.62 degrees.

4. Find the circular-mil area of a stranded wire made of 7 strands
of circular conductor, each strand having a diameter of 0.0808
inches.

5. The potential drop across a load is indicated by a voltmeter
reading to be 232 volts. The voltmeter resistance is 30,000 ohms,
as is the resistance of the potential coil of the wattmeter. What
“potential coil loss” error must be subtracted from the watt-
meter reading?

6. Calculate the copper loss in a field winding of 57 ohms resistance
if the current is 0.89 amperes.

7. Determine the surge impedance of a radio-frequency transmis-
sion line whose inductance per foot of line is L = 304,500 micro-
micro-henries and whose capacitance per foot is C = 3.385
micro-micro-farads. (Z,— VL/C).

10.3 THE L SCALE
The L scale is useful for calculation of logarithmic power ratios in
terms of decibels by either of the formulas:

db. = 10 1ogu,%
1

or d.b == 20 log]()%g
1

P,

P. = 460. Calculate the decibels.
1

Example 10.7 Let
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Solution Opposite 460 on D read the mantissa of log,,460 on
L, 0.663. The characteristic is 2, so that log,,460
is 2.663. Then d.b. = 26.63.

If the data from the same physical situation has

been in terms of voltage ratio, this would have

\Y% ;
been Vz = 21.45. Proceeding as before, log,,21.45=

1
1.3315 or d.b. = 26.63.
Sometimes it is necessary to calculate the power ratio corresponding

to a known number of decibels change in power level. This relation-
ship is expressed by the equation

P\ _db.
Logm(P!) e 10
Example 10.8 Given d.b. = 26.63. Find the power ratio %
1
Solution Using the first formula db, _ 2,663 = lo by
¥ 10 ’ gl(lPI‘

b,
P’
The decimal point is placed after the third digit
because the characteristic of the logarithm 2.663

Opposite .663 on L read 460 on D, the value of

is 2.
If the voltage ratio is desired from the given data,
V, P,
then v& = 4 {Fz =V 460=21.45. The R and D scales
1 1

are used as usual.

Exercise 10.3
The L Scale

1. In carrier-frequency telephone repeater input circuits, one-half
of the received power is lost in a line-matching resistor. What is
the d.b. power loss in this case?

2. In a radio frequency amplifier the input voltage is 0.2 volts. The
output voltage is 45 volts. Find the d.b. voltage gain.

3. A 600 ohm low pass filter designed to “cut off” at 2,000 cycles
per second accepts 6 microwatts power at this frequency, whereas




170 LL SCALES

a termination of 600 ohms would accept 1 milliwatt. What loss
in d.b. is introduced by the filter, at this frequency?

10.4 THE LL SCALES

The unique log-log scales of the Post Versalog slide rule are of great
value in a variety of electrical problems. These scales have an
arrangement and coverage that makes them unsurpassed for the
following calculations.

EXPONENTIAL DECAY TERMS IN THE SOLUTION OF

TRANSIENT PROBLEMS
These terms take the form e % where the function must be evalu-
ated for a series of values of the time t. The exponent kt is first
determined for different values of the time t. The hairline is then
successively set to the values of kt on the D scale and the cor-
responding results for e™' are read from the appropriate level of
the reciprocal log log scales as determined from the right end zone
symbols. The following examples show the calculations of e for
several values of kt.

kt ekt
Example 10.9 0.008 on D gives 0.99204 on LL/0
Example 10.10 0.08 on D gives 0.9231 on LL/1
Example 10.11 0.8 on D gives 04495 on LL/2
Example 10.12 8.0 on D gives 0.00034 on LL/3

Note that with this slide rule the exponential term may be found
with good accuracy from 0.999 down to 0.00005, for values of the
exponent from 0.001 to 10.0. For times on the transient earlier than
kt = 0.001 it is possible with a maximum error of about 5 parts in
one million to use the LL/0 scale for the range kt = 0.001 to 0.0001.
This is done by assuming another 9 to be inserted between the
decimal point and the numerals in the numbering of the LL/O
scale. Thus

e 000 = 0,999204
e~0.00008 — (.9999204, etc.

Thus there is no limit to the re-cycling on the LL/O scale toward
unity. Two digits beyond the 9’s will be accurate.
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HYSTERESIS LOSS IN IRON
This loss is expressed as

Ph = th Br’;

where: P, = hysteresis loss in watts per pound of iron;
K, = a coeflicient;
f= frequency in cycles per second;
B,, = maximum flux density in kilo-lines per square inch;
x = the "Steinmetz exponent.”

Example 10.13 Given P, = 0.6, K, = 1.2 x 10-°, B,, = 65, f= 60.
Find the Steinmetz exponent, x

0.6=1.2 x 107 X 60 X 65*.
65 = 833.

Set the left index of C to 65 on LL3. Opposite 833
on LL3 read x=1.61 on C.

Example 10.14 Given x=1.61, B, =70, K, =1.2=10"%, = 60.
Find P,

Solution P,=1.2x107% x 60 x 70"
= 1.2 x 103 X 60 x 937 = 0.675 watts.

Solution

Note that it was first necessary to evaluate 70"
using the LL3 and C scales.

EMISSION OF ELECTRONS FROM CATHODES
Calculations in this field frequently require raising a number to a
power. The exponent is very often 1.5 or 4.0. Since the method of
solution is the same as that given in the discussion of hysteresis
loss in iron, details will not be repeated.

Exercise 10.4
The LL Scales

1. A 3 micro-farad capacitor charges through an 800,000 ohm
registor from a 400 volt source. Find the current at t = 2.4
seconds.

Formula: i= (E)e "
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2. Repeat the previous exercise when t = 4.8 seconds.
3. Repeat for t = 0.048 seconds.

4. An iron core has a hysteresis loss of 0.5 watts per pound at 60
cycles and B, = 65. x is known to be 1.6. Find K,.

5. The plate current in a certain vacuum tube follows the law:
I=1.2x 1075 E'5, If the voltage E is 200, find L.

10.5 THE TRIGONOMETRIC SCALES

The Post Versalog II slide rule includes trigonometric scales which
have been designed with special attention to the needs of the elec-
trical engineer. In the past considerable resistance to the use of
so-called “vector scales” has existed on the part of students of
electrical engineering, and even among instructors in this field.
With slide rules existing prior to the Post Versalog II rule, this
resistance was well founded because there was no simple way to
keep track of basic operations of multiplication and division by
sin ©, cos O, and tan ©. So much care was required to avoid opera-
tional errors due to misuse of the scales that the many advantages
possible with properly designed trigonometric scales were greatly
reduced.

Any user of this slide rule who has mastered the use of the C and CI
scales for multiplication and division can multiply and divide by
sin O, cos O, or tan O with the same assurance he feels in using the
C and CI scales. Only one simple rule has to be observed: If a trigo-
nometric scale is black or green, use it as you would a C scale; if red,
use it as you would a CI scale. Electrical engineers will find that
their Post Versalog 1I slide rules permit solution of alternating
current problems with a freedom from operational errors not pos-
sible with other slide rules.

The non-specialized uses of the trigonometric scales have been
treated in Chapter Five. The reader should review this chapter
before proceeding with the applications of the trigonometric scales
to electrical engineering problems.

The reader should cultivate the habit of thinking of the black or
green trigonometric scales as C scales, and of the red scales as CI
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sca_les. This is the fundamental nature of these scales, a simple fact
which makes their uses quite as simple as those of the C and CI
scales. An example will illustrate the point.

Example 10.15 A load of 4,000 kilowatts draws current at a lag
angle of 25 degrees. Find (a) the number of
kilovolt-amperes, and (b) the reactive power
drawn from the line.

kw _ 4,000

Solution =
cos© cos 25°

(a) kva= =4415.

Here cos © is 0.906 as may be verified by setting
the hairline to 25° on the Cos scale and reading
0.906 on C. It is unnecessary to take the addi-
tional step of evaluating cos 0, and then dividing
4,000 by 0.906, Instead, the hairline is set to
4,000 on D, 25° on the Cos scale is set under the
hairline, and the result, 4415, is read on D at the
right index of C. Note that the setting used is
exactly the same as that used in evaluating
4,000
0.906
performed by using the Cos scale as though it
were a C scale.

(b) kvar = (kw) tan 6 = 4,000 tan 25° = 1 865.

with the C scale. Thus the division was

Without evaluating tan 25°, we may set right
index of T (black) to 4,000 on D; opposite 25° on
T (black) read 1,865 on D. Here the (black)
tangent scale has been used as if it were a C
scale, to perform a multiplication.

Part (b) could have been solved in another way:
kvar = (kva) sin 6 = 4,415 sin 25° = 1,865,

Here the S scale has been used like a C scale in
multiplication.

Another example will further illustrate the complete consistency
possibie in viewing the trigonometric scales as equivalent to C or
CI scales.
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Example 10.16 During a zero power factor test on an alternator,
a phase angle of 89° was actually attained. The
power delivered by the machine was 520 kw when
operated at rated current and voltage. Find (a}
the rated kva and (b) the reactive kva during the
test.

kw _ 520
cos © cos 89°

Solution (a) kva= = 520 sec 89° = 29,800.

In this solution, the slide rule operator observes
that his cosine scale ends at 84.27°, He finds
instead a scale Sec T (red) covering this region.
In place of dividing by cos 89°, he multiplies by
sec B9, since 1/cos © = sec ©. It is interesting to
note that the settings employed are identical
with the settings which would be required to
divide by cos 89° had the secant scale been made
green and called “cosine.” This scale is made red
and called “secant” in the design of the slide rule
because it is desirable to utilize the same scale
for tangents. The tangent and the secant are
nearly equal in this range, and the tangent scale
requires the red color.

(b} kvars = (kw) tan © = 520 tan 89° = 29,800

Here it is observed that the same setting is used
as in (a), since for angles near 90° tan O is
approximately equal to sec O.

Exercise 10.5

The Trigonometric Scales

1. A load of 5,000 kilowatts draws current at a lag angle of 32°.
Find (a) the number of kilovelt amperes and (b) the reactive
power drawn from the line.

2. Solve Example 10.16 with a phase angle of 87.5° if the power
delivered is 600 kw.
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10.6 THEORY AND PROCEDURES

In electrical engineering the principle applications will be in the
solution of alternating current problems where it is necessary to
make frequent conversions between the polar and the rectangular
forms of the phasor (often but improperly called vector) quantities.
In electrical engineering, these quantities are symbolized in the
following two forms:

Polar Form  Rectangular Form
Al© = a+jb (1)

The angle © may have any value from zero to 360 degrees and quite
freqguently is close to zero degrees or to 90 degrees. The process of
conversion from polar to rectangular form will be discussed first.

POLAR PHASOR TO RECTANGULAR PHASOR
For purposes of illustration, let the phasor be an impedance
Zo=R+jX (2)

Where: Z is magnitude in ohms;
O is phase angle in degrees;
R is resistance in ohms;
jis V—1, called in mathematics i;
X is reactance in ohms.

The problem is: given Z and O, to find R and X. The relations are
analytically:

Z|©="7Zcos O +jZsin O (3)
The solution takes the form:
R=7Zcos O X=Zsin® (4)

Figure 10.1 - Graphically.

which for convenience is usually applied in one of the following
equivalent forms:
R=X/tan 6 X=Zsino {(5)
R=Zcos 0O X=Rtan O (6)




176 PHASORS

Equation (4), while simple to visualize, requires additional labor
under certain circumstances. Equations (5) and (6) cover all situa-
tions with equal economy of effort.

Equations (5) and (6) suggest the following rules:

RULE A:
When O < 45° use (5). First find X = Z sin ©, then divide this
result by tan O to get R. For example:

1.2[7°=1.2sin 7/tan 7°+j 1.2 sin 7° = 1.19 +j 0.1462

RULE B:
When @ > 45°, use (6). First find R = Z cos O, them multiply this
result by tan O to get X. For example:

1.2|70° = 1.2 cos 70° +j (1.2 cos 70°) tan 70° = 0.410 + j 1.128

The reader, having recognized that the trigonometric scales are
used exactly as C or CI scales for multiplication and division, will
check the above examples without difficulty. He will observe that
such problems are solved with three motions: set slide, set hairline,
set slide. As a check on proper procedure, he should have worked
as follows:

PROCEDURE A;
Note that the angle is less than 45°. Therefore, find the imaginary
component first. Set the index of C to 1.2 on D; set the hairline to
7° on S; read X = 0.1462 under hairline on D; move slide to bring 7°
on T (black) under hairline; read R = 1.19 on D under index of C.

PRODECURE B:
Note angle is greater than 45°. Therefore, find real component first.
Set the index of C to 1.2 on D); set the hairline to 70° on Cos; read
R = 0.410 under hairline on D; move slide to bring 70° on T (red)
under hairline; read X = 1.128 on D under index of C.

In practice, procedures A and B are almost identical. It is only nec-
essary to watch the first multiplication, using the S scale in the one
case and the Cos scale in the other.

Rules A and B may now be summarized in a single inclusive rule:

RULE C:
To convert a polar phasor to complex form, find first the smaller
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component by multiplying Z by sin © or cos © as the case may
require; then divide or multiply by tan © as the case may require.

The application of Rule C is extremely easy to master since the slide
rule settings take the same form whether 9 is less than or greater
than 45°. The slide rule settings will be: Set an index of C to Zon D.
Set hairline to sin © (0 < 45° or to cos © (8 > 45°). Read X
(B < 45°) or R (8 > 45°) on D under hairline. Move slide until © on
T (black or red), is under hairline. Read R (6 < 45°) or X (© > 45°)
on D at an index of C.

POLAR PHASOR TO RECTANGULAR PHASOR FOR ANGLES
LESS THAN 5,73%

The concepts expressed in rule C may be applied unchanged. Hence,
find the short side by multiplying Z by sin O, using angles on scale
ST (black). However, when the second step is taken, i.e., the division
of X by tan O, it will be apparent that the result will be R=Z. That
1s to say, for angles less than 5.73°, the real or resistive component
of Z is equal to Z. It is only necessary, then, to calculate X, the short
side of the triangle.

Example 10.17 1.2|5°=12+j12sin 5°=1.2+j 0.1045

It should be remembered that the range of the ST scale is from 0.01
on the left to 0.1 on the right. Hence, the X component lies between
0.01 Z and 0.1 Z.

The lower limit of ST in terms of angle is 0.573°, found near the left
end. The nature of this scale is such that we can begin again at the
right end with 0.573° and range on down to 0.0573° at the left end,
merely by moving the decimal point one place to the left, in both ©
and sin O. In this way, the conversion from polar form to rectangular
form may be made for angles as near zero as we please. This cyclic
feature of the ST scale results from the fact that it is based on the
approximation (valid to slide rule accuracy for angles less than
5.73°} that
O (inradians)=sin O = tan ©

The scale gives correct values of O in radians when used with the
C scale. Consequently, there is a small but innocuous error in the
values of sin O and tan O as read from the C scale for angles near
the 5.73° limit of ST. The reader should insure his own confidence
in the ST scale by comparing values of sin © and tan O taken from
it with corresponding values found in trigonometric tables.
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Example 10.18 1.2 (5° = 1.2+ 1.2 sin 5°= 1.2+ 0.1045
(The firstis repeated for comparison)

Example 10.19 1.2(0.7°=1.2+j 1.2 sin 0.7°= 1.2 + j 0.01465
Example 10.20 1.2|0.5°= 1.2+ j 1.2 sin 0.5°= 1.2 + j 0.01045
Example 10.21 1.2{0.07°=1.2+j 1.2 sin 0.07° =

1.2 + j 0.001465, etc.

The decimal point in X is moved to the left as many places as the
decimal point in © is moved. Another way of expressing this rela-
tionship is —the range of the ST scale is multiplied by 10! every
time the decimal point is moved one place to the left in the angular
markings of this scale.

POLAR PHASOR TO RECTANGULAR PHASOR FOR ANGLES
GREATER THAN 84.27°
Here again, the long side of the triangle, in this case X, is to be
taken equal to Z. The short side is calculated according to Rule
C from:

R=7Z cos© ="Z/secO
Example 10.22 9|88° = 9/sec 88°+j9=0.314+j9

Here the setting employed is: Right index of slide to 9; hairline to
88° on Sec T (red); read R = (1.314 under hairline on C. The secant
scale is essentially a CI scale, hence it is employed for division like a
CI scale. In other words, the proper view point to hold for angles
greater than 84.27° is still to find the real component by multiplying
Z by cos 0. When the attempt is made on the slide rule, a secant
scale is found in place of a cosine scale in this range of angles. So
we divide by sec © as the equivalent of multiplying by cosine 0.

The cosine scale covers the range of angles from 0° to 84.26° and of
cosines from 1.0 to 0.1. The left end values of 84.26° and cosine =
0.1, are equivalent to 84.26° and secant = 10.0. The Sec T (red)
scale begins with 84.27° at its right end and extends to 89.427° and
secant = 100.0 (cosine = 0.01) at the left end. Like the ST scale, this
scale can be used repeatedly for angles nearer and nearer to 90°. For
each recycling, the fractional part 427 is to be moved one decimal
place to the right and the vacated place replaced by a nine (9 as
summarized in the following table:
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Sec T (red) Scale:

Left end Right end
Given range: sec 89.427° =100 sec 84.27°= 10.0
Second range: sec 89.9427° = 1000 sec 89.427° = 100
Third range: sec 89.99427° = 10000  sec 89.9427° = 1000

Example 10.23 1.2|85° = 1.2/sec 85°+j 1.2=10.1045+j 1.2
Example 10.24 1.2 |89.3° = 1.2/sec 89.3° +j 1.2 = 0.01465 +j12
Example 10.25 1.2{89.5° = 1.2/sec 89.5° +j 1.2 = 0.01045 +j1.2
Example 10.26 1.2{89.93° = 1.2/sec 83.93°+j 1.2 =

0.001465 +) 1.2

PHASORS NOT IN FIRST QUADRANT

{Conversion from polar to rectangular form.) In electrical problems
phasors frequently appear at angles greater than 90°, i.e., in the
second, third, and fourth quadrants. Line potential differences and
currents at various points along a transmission line may lag several
quadrants behind the input voltage. Transfer impedances may
have any angle whatever. (A transfer impedance is defined as the
ratio of a source potential difference applied in one branch of a
network to the current in some other branch.} Such problems are
brought within the scope of the preceding discussion of the first
quadrant by the method illustrated in the following example.

Figure 10.2—Transfer Impedance —128°.
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|
Example 10.27 A transfer impedance is known in polar form as
630 ohms at angle 128°. Find its real and reactive ! |
components.
The recommended procedure is to draw a sketch +X
in polar form as shown in the diagram. Calculate
the angle 3, the smaller angle made by the phasor =
with the horizontal axis. /308 \
Determine R and X by the methods explained . -R R 1T~ +R
for the first quadrant and give these components i k g
the proper sign as indicated in the sketch.
Solution 8= 180" — 128" = 52° a5
-X
630 [52° = 630 cos 52° + j(630 cos 52°)(tan 52°) =
388 +j 497
Figure 10.4 ~Transfer Impedance —308°.
630(128°> = —388 + j 497
Example 10.28 630(218°=R + jX. Find R and X. Solution = 360° — 308° = 52°
X 630 |52° = 630 cos 52° + j(630 cos 52°) tan 52° =
388 +j 497
218{‘\ 630(308° = 388 —j 497
AR +
- R
‘ﬁ RECTANGULAR PHASOR TO POLAR PHASOR
A The problem is the inverse of that stated at the beginning of this
section, and will be handled by the same relations, i.e., equations
640 - (6) and (6), rearranged as follows:

X/R = tan 6/1 = tan O/tan 45°, Z = X/sin © (7
R/X = 1/tan © = tan 45°tan O; Z = R/cos © (8)

Figure 10.3-Transfer impedance — 218°.

Equation (7) is to be used when © < 45°.

Solution B = 218° — 180° = 38° Equation (8) is to be used when 6 > 45°.
630|38° = (630 sin 38°)/tan 38° + j 630 sin 38° =
- Two examples carried through in parallel form will illustrate the
497 +j 388 two cases: ; :
o , R+jX=25+)4.33
630[218° = —497 —j 388 To find Z|© when

Example 10.29 630|308° = R + jX. Find R and X. R+jX=433+j25
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R=4.33

Figure 10.5— Rectangular < 45°.

Find © using the proportion
X/R = tan H/tan 45°

Settings: Hairline to 2.5 on D.
Index of slide to 4.33.

The hairline is now located at
60°/30° on T; choose O = 30° be-
cause X < R.

Find Z using Z = X/sin O.

Settings: The hairline is already
on X on the D scale. Move slide
to bring sin 30° under hairline.
Read Z = 5 on D under index of
slide.

Z X=4.33

8

R=2.5

Figure 10.6 —Rectangular > 45°,

Find O using the proportion
R/X = tan 45°tan ©

Settings: Hairline to 2.5. Index
of slide to 4.33.

The hairline is now located at
60°/30° on T; choose 6 = 60° be-
cause X > R.

Find Z using Z = R/cos ©.

Settings: The hairline is already
on R on the D scale. Move slide
to bring cos 60° under hairline.
Read Z = 5 on D under index of
slide.

If the reader will carry out the operations just described, he will see
that the two cases resulted in identical slide rule settings throughout.
Differences appear only in the interpretation of the settings. Thus,
to determine the angle, a choice had to be made between 30° and
its complement, 60°. This choice should be made solely as a result
of visualization of the triangle: If X < R, choose the smaller angle.
If X > R, choose the larger angle.

Again, in finding Z after © was known, a choice had to be made
between dividing the hairline setting by sin O or by cos 6. Again,
the choice is made by visualizing the trigonometry involved. If
hairline is on X, divide by sin 0, (sin 30°). If hairline is on R, divide
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by cos O, (cos 60°). Since sin 30° = cos 60°, these two settings were
identical. The reader is now in a position to appreciate the following:

RULE D:
To find Z |© when the two components R and X are given:

1. Set the hairline to the smaller component on D.

2. Set an index of the slide to the larger component on D. Under the
hairline, read the angle on T (black or red) selecting the proper
angle by visualization of the triangle.

3. Leaving the hairline on X or on R as the case may be, divide X
by sin © or R by cos © to get Z. (Bearing in mind that the S and
Cos scales are fundamentally C scales the user can readily de-
termine how to perform the division.)

Example 10.30 0.863 +j 0.834 = 1.20 |44°
Example 10.31 1.19+j 0.1462 = 1.20|7°
Example 10.32 0.411+j 1.128 = 1.20|70°
Example 10.33 0.1253 + j 1.193 = 1.20(84°

RECTANGULAR PHASOR TO POLAR PHASOR FOR SMALL

AND FOR LARGE ANGLES
In the foregoing problems the ratio X/R=tan 6@ or R/X = 1/tan O is
limited to the range 1.0 to 10.0, corresponding to angles between
5.71° and 84.3° It is important to extend the range toward (° and
9(°. The slide rule user must be constantly alert for the following
cases:

When X/R < 0.1, the angle must be read on ST instead of on T.

When R/X < 0.1, the angle must be read on Sec T (red) instead of
on T (red).

In either case the magnitude of Z is taken equal to the larger of the
two components.

Example 10.34 1.2+ 0.1045=1.2|5°

Solution Here © = 5° is read from the ST scale since 0.01R
< X < 0.1 R, indicating that 0.01 < tan © < 0.1
The highest range of ST is from 0.01 to 0.1. For
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Example 10.35

Solution

Example 10.36

Solution

Example 10.37

Solution

Example 10.38

Solution

Example 10.39

Solution

Example 10.40

Solution

all values of © on the ST scale, the approximation
is made that sin 8 = tan 6. Therefore, Z equals
larger compenent, 1.2.

1.2 +j 0.01465 = 1.2]0.7°

Here again 0.01 R < X < 0.1 R, hence the ST
scale is read without change of decimal point.
This angle is near the end of what might be called
a first cycle over ST.

1.2 +j 0.01045 = 1.2|0.5°

Here 0.001 R < X < 0.01 R. Hence O iz read from
the ST scale but with the decimal point moved
one place to left. This angle is in and near the
beginning of a second cycle over ST.

1.2 +j 0.001465 = 1.210.07°

This is similar to example 10.36. The angle is in
and near the end of the second cycle over ST.

1.2+ 0.001045 = 1.20.05°

Here the ST scale decimal points will be moved
two places to the left. This angle is in and near the
beginning of a third cycle over ST.

1.2 +j 0.0001465 = 1.2(0.007°

In this example the ST scale decimal points will
again be moved two places to the left. This angle
15 in and near the end of a third cycle over ST.

0.1045+j 1.2 = 1.2(85°

In examples 10.34 thru 10.39, X < R, requiring
the use of ST. Here X > R which requires the use
of Sec T (red). Angles are read without change of
decimal point when 0.01 X < R < 0.1 X. In this
example the angle is in and near the beginning of
a first cycle over Sec T (red) approaching 90°.
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Example 10.41 0.01465 +j 1.2=1,2(89.3°

Solution

Example 10.42

Solution

Example 10.43

Solution

This is similar to example 10.40. The angle is in
and near the end of a first cycle over Sec T (red),
approaching 90°.

0.01045+j1.2=12/89.5°

Here the hairline will be near the beginning of a
second cycle over Sec T (red). In example 10.40
we were 5° short of 90°. Here we are 0.5° short
of 90°.

0.001465+j 1.2 =1.2|89.93°

In this example the hairline will be near the end
of a second cycle over Sec T (red). In example
10.41 we were 0.7° short of 90°, Here we are 0.07°
short of 90°.

For rectangular form to polar form for angles not in the first quad-
rant, the reader should refer back to the corresponding problem in
conversion from polar form to rectangular form. The angle 3 is to
be found by the method just developed. Inspection of the diagram
will then reveal how to find O.

Exercise 10.6

Theory and Procedures
Convert the following polar form phasors to rectangular form:

1

> oA w oW

1.2 |44°
9(30°

. 9|=30°

0.02[29.2°
0.02 |—29.2°
36.2|10°

7. 1.2|46°
8. 9(60°

9. 9|-60°
10. 0.02|60.8°

11. 0.02|-60.8°
12. 36.2|80°
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Convert to complex form: ANSWERS TO EXERCISES
13. 4,200(25° 19. 220(62° EXERCISE 1.1
o o 1. 171 302 354 708 455 815 1995 1225
14; 4,200:/0.25° 20 240 oz 2. 0.734 0993 0941 0980 0.828 0902 0606 0.271
0 0 3. 414 0.716 861 0.791 877 0.993 166 0.525
15. 4200/0.025 al. 1220|2400 4. 0902 863 0.989 123 0.438 485 0.280 466
16. 4,200/87.5° 29. 2201332° 5. 202 102 121 126 0976 0704 0465  0.070
17. 4,200 |89.75° 23. 22028 EXERCISE 2.1
1. 1125 6. 50.7 11. 165
18. 4,200 |89.975° 2. 0.104 7. 21.2 12. 0.000276
3. 14.69 8. 0.1542 13. 842
] 4. T7.2 9. 3.21 14. 108
Convert the following phasors to polar form: 5. 358 10. 799 15. 13,520
24. 0.863 +j 0.834 35. 4,200 +j 183.2 EXERCISE 2.2
25. 7.8+j45 36. 4,200+ 18.32 1. 8.66 6. 199 11. 4.46
26. 7.8—j 4.5 37. 4,200 +j 1.832 2. 0284 T iz 12. 35900
27. 0.01745 + j 0.00976 38. 0.314+) 9 S Ginh o oga ie sieno
28. 0.01745 —j 0.00976 39. 183.2+j 4,200 5. 68.4 10. 001215 15. 66
29, 35.6+)6.29 40. 18.32 +j 4,200
30. 0.834 +j 0.863 41. 1.832 +j 4,200 EXERCISE 2.3
31. 45+ 178 42. 103.3 +j 194.2 > 2 g u e
32.45—j178 43. —-194.2 43 103.3 3. 233 8. 1431 13. 0.574
33. 0.00976 + j 0.01745 44, —103.3—j 194.2 4. 3-48 9. 211 14, 459
34. 6.29+j 35.6 45. 194.2 —j 103.3 5. 0.814 il e 2R
EXERCISE 2.4
1. 0.0322 5. 0.370 9. 3.07
2. 0.332 6. 3.70 10. 1.176
3. 0.00322 7. 0.00282 11. 0.0405
4. 0.0370 8. 200 12. 0.826
EXERCISE 2.5, 2.6
Multiplication
1. 7.25 7. 25.8 13. 108.7
2. 4.48 8. 1.967 14. 224
3. 208 9. 75.2 15. 1,990
4. 3.45 10. 68.2 16. 605
5. 234 11. 46.6 17. 8370
6. 305 12. 323 18. 4,050
Use D and CI scales, exercises 1 to 6.
Use DF and CIF scales, exercises 7 to 12.
Use D and CI scales or DF and CIF, exercises 13 to 18.
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Division
19. 3.02
20. 2.89
21. 2.84
22, 233
23. 234
24. 4.48

25.
26.
27.
28.
29,
30.

4.27
0.814
0.0650
0.444
43.3
20.6

Use D and C scales, exercises 19 to 24.

Use DF and CF scales, exercises 25 to 30.

31, 1431
32. 1670
33. 211
34. 0.840
35. 7.87
36. 184.0

Use D and C scales or DF and CF, exercises 31 to 36.

EXERCISE 2.7
9.00
8.74
32.2
14.40
0.00672

Dn o 03 PO =

EXERCISE 2.8
1. 01174
2. .0608
3. 84.8

EXERCISE 2.9
123.
0.1098
0.001537
0.060775
181.6
19.03
19.29
0.076

Q0 =1 5 Ot L0 1D

EXERCISE 2.10, 2.11, 2.12

1. 368 774
2. 7.04 3.34
3. 0299 0.506

EXERCISE 2.13
1. 280
2. 9.86
3 19
4. 0.00783

EXERCISE 2.14
1. 1.328
2. 1812

1,018
2.18
0.718

1,440

,_.
SeEa®

Do

10.
il.
12.
13.
14.
15.
16.

1,734

1.716 1.266
0.821 0.983

00;=d: G Ch

Ll

1876
25.0
11.39
636
20,150

1.355
68.5
1785

132.6
4.28
0.550
23.4
0.1366
26.3
0.0219
0.01238

2200 2550 2,580 3,070
1120 0915 0820 0.769
1874 1975 216 276

1.25

1.267
0.284
1.507

3.97
X=6.09, Y= 872, 2= 125

EXERCISE 2.15
1. 34.0 and 0.53
2, 195and 1.64
3. 25.0 and—4.8

EXERCISE 3.1
416
511,000
1,145,000
15,730
722
0000000246
00884
.0000578
5.20
30.41

i b B R e o Sl

[

EXERCISE 3.2
22.7
0.0222
188
0.00137
56,600
0.0000616

IR

EXERCISE 3.3
11.53
.436
173.5
4.81

a) 1131
a) 39.6
a) 6.09

SCwee LIk

1

EXERCISE 3.4
2

20

200

69,000
422,000,000
32.8

1.817

2.88

6.46

WX DA WD

EXERCISE 4.1
1.0675
1.01027
1.96
0.9454
0.9836
0.9803
0.717

Rl

b) 55.4
b) 1385
b) .125

10.
11.
12.

14.

B

c) .0106
c) .8
c} .4375

10.
11.
12.
13.
14.
15.
16.
17.
18.

1.0329
2.23
1.0523
0.9781
0.518
1.005626
0.0058

—23.6 and —17.8
6.6 and 4.55

206
35.57
2674
7,140
1,404
25.7
0.651
0.2958
0.03115
0.0851

2.20
0.88
6.95
0.167
22
0.0431

811
2,330
28,000

dy 3,020
d) .01924
d} 15.55

11.98

30.7

82.4

0147
0000467
000000111
684

345

1857

15. 1.372
16. 1.0163
17. 1.00354
18. 0.591
19. 0.8005
20. 1.1172
21. 0.578

i8¢

e) 5.42
e) 2,270,000
e) 5.06
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22, 0.9758
23. 0.99654
24. 1.0494

31. 0.0109
32, 1.00915
33. 0.99843

EXERCISE 4.2
7.69
1.00204
0.9798
0.514

L R

EXERCISE 4.3
1. 1.267
2. 362

5 0201
6. 10.02
7. 1103
10. 2.98

11. 0.59
12. 1.99

16. 0.0239
17. 1791

EXERCISE 4.4
1. 1.100
2. 1791

7. 111
8. 0.684

13. 11,220,000

EXERCISE 5.3
0.5664
0.00524
0.0209
0.215
0.0494

G L0 b e

16. 5%

17. 1°50’
18. I

19. 0.258°

25.
26.
27.

34.
35.

feeBa N

20.
2L
22
23.

,d
Scwmam

0.869
1.00565
1.245

0.421
0.9365
1.0515

1.226
0.130
0.99796
0.9654

2.494
3.277

7.33
246

13.
14.
15.

18.

1,550,000

0.0924
0.148
0.236
0.350
0.436

6°
13°20°
21°
49.3°

5.50
474

0.336
0.971

0.78
1.57
0.31

3.66
5.60

11.
12

15.

11.
12.
13.
14
15.

24,
25.
26.
27,

0.0408
1.001485
328

1.387
0.934
0.865

1.0206
0.8155
0.0498
1.0338

0.224
911

0.001637
0.191

0.000,001,041

0.548
0.866
0.00436
0.985
0.0610

58.4°
64.4°
1.16°
g

EXERCISE 5.4
1. 0.824 6. 0.994
2. 10 7. 0.989
3. 10 8. 0976
4. 0972 9. 0937
5. 0999 10. 0.909
16. 87.02° 20. 36°
17. 78.4° 21, 24.1°
18. 66.4° 22. 78.48°
19. 54° 23. 88.8565°
EXERCISE 5.5
1. 0.949 6. 0.323
2. 0.00349 7. 0.429
3. 0.0279 8. 0.916
4. 0.07562 9. 111
5. G112 10. 2.650
16. 0.5° 20. 6.9°
17. 21. 38.1°
18. 1 22, 49.5°
19. 4.3 23. 7%°

EXERCISE 5.9

1. 657 7.
2. 2.33 8.
3. 426 9.
4. 254 10.
5. 8.23 11.
6. 4.77 12.

EXERCISE 5.10
1. A=418 B=482° b=447 11.
2. B=15°,b=214,c=828 12,
3. a=19.8b=212 C=175 13.
4 A=4%, B=T1° c=229 14.
5. A=313, B=587,c=237 15.
6. A=415°, B=56,C= 825 16.
7. B=45°,b=24,c= 339 17.
8. A=3875 B=525 a= 0353 18.
9. A=6720",b=551,c=143 19.

10. B=81°, b= 884, c=89.5 20.

EXERCISE 5.11
1. (25,571 3. (173, 1)

2. (0,3 4. (433,25
7. 5e0.9153 8. 580.6%1
10. 18.71 +j9.54 11. 72+j45

191

11. 0688
12. 0.500
13. 01736
14. 0.0466
15, 0.1685

24, 89.99°
25. 89.8°
26. 36.9°
27. 258

11. 1042
12. 573

13. 0.00873
14. 0.0244
15. 0.99

24, 8%°
25. 89.6°
26, 0.2°
27. 5.8°

20.8
1201
6.22
253
15.5
16.34

A=41°, B=49 c= 153.8
A=65° B=25° ¢c=552
A=69.9°, B=20.1°, c= 661
A=564° B =876, c=106
C=53%,b=231c=215
C=65,B= 1449 b= 633
A =485, C=895 b=87
B=505°,C=92.2°, a=223
A=3F, B=56.5°, C = 93.5°
A=407, B=59%, C =803

5. (3.65, 1.63)
6. (5.73,4.02)

9. 16.6/32.4°
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EXERCISE 6.1 THRU 6.6
. EXERCISE 8.3
. 21. 6.26
L ;iflﬁ% }; gg;gg 2;_ i 1. (a) A=11,660IbsT B = 8,940 Ibs C
3. 2.97in 13. 412 miles 23, 560 RPM bl Hggg lll‘;sg Mz e ¥
4, 2,130 bolts 14. 28in 24. 7,610 ft = s 5 = 4,500 Ibs T
5 126t 15 163 25. 45,700 ft S el J = 5,000 Ibs T
6 2.7 16 375 26, 7740 Tbs D= Jpthe e C K=0
7. 772 Ibs 17. 6 927, 141 & e 50 1bs. T 1.=2,640 lbs T
8 213 hrs 18. 301 int 28. 302 ft i el M=rHpouite e
9. 7.9 sec 19. 6.68 gal 29. 1.25ft =9 S
10, 15,280 20, 7.67 in. §(1) ?.;g 5. R, = 19,430 bs S —
« I R = 14,330 Ibs M, = 134,900 ft Ibs
M, = 77,700 ft Ibs M, = 86,000 ft Ibs
E"f“‘;fg’;; , = 129,800 ft Ibs Sby,, = 16,900 Ibs/in,
2. $20.80 —odnin e 1 a7 1bs, 1bs
3. $59.50 ; 3. X =940 in; f. = 1,070 7; f, = 20,000 -
g $52.50 s 4, y =6 (cosh 0.0195% — 1)
iy H = 316,000 Ibs; V= 343,000 Ibs; T = 466,000 Ibs
e 13.8% —aap 8. . _ Ibs
g e 5. p, =680 ey P = 4,600 e
TOTAL 100 % EXERCISE 9.1
EXERCISE 7.2 é ;19125“ R 7. 0.139 btu/deg R
; . 4.15 psia 8. —811 btu
1. 14.9% 2. 4.73% 3. 2.81% 3. 3.68 psia 9. 51.6 btu/lb
4 $233 4. 136 10. —1.935 btu/deg R
5 448 btu 11. 230 psia
EXERCISE 7.3 : 6. 4.8] ft?
1. $9,760 ;|
2. $12,550 : EXERCISE 9.2
3. $32.000 ; 1. 2820 btu/hr 4 968°F
4. $139,500 . 2. 1420 btu/hr F f 5. 467 btu/hr
5. $9,200 - 3. 416°F, 97 F, 4.1 ft
EXERCISE 7.4 EXERCISE 9.3
1. 0.0105 3. 0.1074 5. 0.0668 1. 13.25in% 1.415in 5. 0.711 ft.; 727 ft/min
2. 0.0729 4 00961 2. 103.6 in* 2.67 in 0.0214 fi.; 183 ft/min
s o 3. 237.7in 6. 2660 Ibs
EXERCISE 8. 4 147.7°, 2.58 Rad 7. 4330 Ib
1. (a) 10,200 cubic feet 6. (a) V=95.2 feet; H= 526 feet 734 lbs; 438 lbs °
(b) 10,060 cubic feet (b) V= 27.8 feet; H= 211 feet
2. 483.88 feet (e) V= 135.? feetI;) H E :73678 feet:14 ) EXERCISE 10.1
3. 243 feet; N.22.77°W 7. (a) R= 848 feet; D=6.76°; 1 = 14.1° :
4 1374 feet (b) R = 481 feet: D = 11.94° [ = 17.58° 1. 12.2 ohms 2. 0.0410 ohms 3. 1,114,000 CM
» D= 15.40° I = 9.47°
5 220 feet (c} R= 373 feet; D = 15.40°% EXERCISE 10.2
) 1. 126.7 puuf 5. 3.59 watts
EXERCISE 8.2 . ) ; 2. 293.7 volts 6. 45.1 watts
1 Ezg g = ?123 g - I(ﬁ : i. 0.9996 7. 300 ohms
=116 R = . 45,700 CM
&) C=1563"; R = 33" :

EXERCISE 10.3
1. 3.01 db loss 2. 47db 3. 22.2db loss

W

2. (a) R= 108" (b) R=11§" (c) R=5%"
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EXERCISE 10.4
1. 1.84(10)* amps 4. 1.048 (10)-°
2. 6.75 (10)° amps 5. 0.0342 amps

3. 4.90(10)* amps

EXERCISE 10.5

1. (a) 5,900 kva 2. (a) 13,760 kva
(b) 3,120 kvars (b} 13,740 kvars
EXERCISE 10.6
1. 0.863+j0.834 7. 0.834+j0.863
2. 7.80+j450 8. 450+)7.80
3. T7.80—3;4.50 9. 4.50-j7.80
4. 0.01745+ ) 0.00976 10. 0.00976 + j 0.01745
5. 0.01745 —j 0.00976 11. 0.00976 —j 0.01745
6. 356+j6.29 12. 629+)3586
13. 4,200+ 183.2 19. 1033+ 1942
14. 4,200+ ; 18.32 20, —194.2 + 103.3
15. 4,200+ ; 1.832 21, —103.3 —j 194.2
16. 183.2+j 4,200 22. 194.2-j103.3
17. 1832+ 4,200 23. 194.2-j103.3
18. 1.832 +] 4.200
24, 1.2[44° 35, 4,200(2.5°
25. 9.0 |_3..92 36. 4,200]0.25°
26. 9.0|—-30° 37. 4,200|0.025°
27. 0.02|29.2° 38. 9|88
28. 0.02]-29.2° 39. 4,200|87.5°
29. 36.2|10° 40. 4,200(89.75°
30. 1.2 |4_62 41. 4,200(89.975°
31 9|60° 42. 220(62°
az. 9|60 43. 220|152°
33. 0.02]60.8° 44, 220|242
34. 36.2|80° 45. 220(332°






