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2. Reading the Scales
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The following three systems of division reappear in all scales:
A Read as you would read a scale

graduated to full millimeters. The

tenths of an interval, i. e. the fourth

digit, is easy to locate by estimate 3 I 14 l 15

within the smallest intervals. ; | I
B The intervals between the shortfest all ! L IEI HE

lines amount to two fenths of the 132 1383

secondary intervals marked by

slightly longer division lines. The

odd third, and also the fourth digit 20 (21) (22) (23)

is located by estimate. I : I i I |
C Here each interval between the B I:'I Iil | IEH I ' Il

shortest lines is five tenths of the « A 234

secondary intervals. Infermediate

locations for the third digit are

boo i i 50 (51) (52) (53) (54) (55)
All numbers printed in bracketsinFig.3
are not actually printed onthesliderule ¢ I | ' | | | l: | | |
itselfand must, in practice,be counted off ! !
from the preceding number. Similarly,
the labels 1.3, 1.4,1.5, efc.inFig.3Aare Fig. 3
abbreviated to 3, 4, 5, efc., thefirst digit ’
1 being self-evident in this rangé.
The slide rule only takes account of digits in consecutive order. The value 325
may also be read as 3.25, .0325, 3250 efc. The correct place for the decimal point
is determined after obtaining the result by a rough approximation. To avoid
reading errors it is good policy to think of and pronounce all numbers digit-by-
digit. For instance, 235 = two-three-five, not two hundred and thirtyfive.
At first many beginners have some difficulty in locating numbers on these rather
unusual scales. Patient and methodical practice by setting and reading various
numbers of two and more digits with one slide end or the cursor hairline is,
therefore, strongly recommended. Once you have learned to locate each and
every value quickly, correctly and without groping, you are well on the road
to being a competent slide rule user, because the mechanics employed in solving
actual problems by slide rule are easily grasped.

e of Tangents and Cotangents

e of Small Angles in Radians
e of Sines and Cosines

e of Squares
Fundamental Scale

e of Cubes
e of Squares

3. The Principle of Slide Rule Calculation

Mathematical operations on the slide rule are performed by the mechanical
addition or subtraction of two segments of graduated scales. This method is best
demonsirated by two millimeter scales sliding lengthwise fo each other.
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Fig. 4 illustrates the sample problem 2 4 3 = 5. When the first line, 0, of the
upper scale is shifted to the value 2 on the lower scale, we can add to this line
segment, 2, any other line segment of the upper scale, in this case the length 3.
Under 3 of the upper scale read the sum 5 on the lower scale. Similarly, too, we
read the sum of 2 4+ 1 = 3, and, by counting off on the millimeter intervals, also
20 + 15 = 35 efc. etc. The subtraction 5 — 3 = 2 is the same process in reverse.
When the values 5 and 3 are made fo coincide, the remainder, 2, appears under
the first line of the upper scale on the lower scale.

In more elaborate form the same basic principle finds application in the slide
rule, with the fundamental difference that here the division lines are logarithmi-
cally spaced (but labeled with the numbers whose logarithms they represent).
The result is that, since the product of two numbers is the sum of their logarithms,
we can obtain the product by adding two segments of slide rule scales. Con-
versely, by subtracting one segment from another we obtain the quotient of one
number divided by another.

4, Multiplication
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Fig. 5
Example: 18 X 13 = 234 Roughly: 20 X 10 = 200

Set the left 1 (called the left index) of scale C to.coincide with the value 18 of
scale D. Now move the cursor to 13 on scale C and find the product 234 under
the hairline on D. One essential feature of the slide rule consists in that we can
perform as many other multiplications by 18 as may be required without changing
the initial sefting. 7

The arrows in Fig.5 indicate two such further operations, viz.
18 285 = 513 Roughly 20 X .25= 5
18 X78 =1404 Roughly 20 X 7 = 140

It will soon be observed, as in 18 X 7.8, that sometimes the slide projects sofar
beyond the end of the body scale that no reading can be taken. The simple
remedy then consists of sefting the right index of the slide over 18 and shifting
the cursor fo 7.8.

This end-for-end exchange of the indexes is rather troublesome and it will there-
fore be appreciated that the upper pair of scales CF and DF enables us fo find a
better solution. By studying the rule you will find that we can continue reading
on these scales where the lower scales break off. The arrows in the example
18 X 7.8 show a case in point. This procedure is always applicable provided
that the slide does not project out of the body by more than half its length.

Examples: 3.04 X 2.68 = 8.15 17.38 X 447 =777
3.04 X 405 =12.31 10.03 X .2484 = 2.490
3.04 x727 =2210 J39 X 655 = 484
3.04 X 8.025 = 24.40 1483 X 039 = 578
981 X705 =692 3476 x 0324 = 1.126
2,208 x 0213 = 0470 433 X 895 =388

aibes i aSEl
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It is often advantageous to make the first setting with the index of the CF scale
placed opposite the multiplier on DF, because in this case there is no need to
decide whether to start with the right or the left index. Furthermore, in all
seftings made with the upper pair of scales no more than half a slide length will
ever project beyond the body scales. This means that the product can always be
read on either the upper or the lower pair of scales, often on both scales simul-
taneously. It is advisable to repeat the previous exercises by first starting with C
and D and next with CF and DF. In this way you can appreciate by experience

“which type of setting is the better one.

5. Division
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Fig. 6

Example: 2620 = 17.7 = 148 Roughly: 3000 =~ 20 = 150

Set the cursor over the value 2620 on scale D and draw 17.7 on C into alignment
so that both values are opposite each other. The quotient 148 then appears
under the left slide index.

Notice: It is worthy of note that when this manipulation is completed the
setting of the rule is also identical fo that for the multiplication 17.7 X 148 = 2620.
The only difference between multiplication and division is the order of the setting
and the reading.

In the problem 582 = 7.23 = 80.4 the quotient will be found under the right
slide index. It follows that in division no end-for-end switches of the indexes will
occur. Later in this text it will be demonstrated how this feature can be usefully
employed. The following chapter also contains a reference fo the same subject.

Examples:
378 — 45 = .840 6.25 +— 1328 = 4741
583 + 745= 712 914 - 1629 = .0561
31.5 228 = 1.382 180 = = 57.3
402 - 26.66 = 15.08 7 = 180 = 01745

The exercises in division, too, should be done, first with the C and D and then
with the CF and DF scales. When the problem is set on the upper pair of scales
the values are arranged in the fraction form of notation, with the numerator
above the denominator, thus:

3.78

S5~ 840
The answer can be read both over the index of CF on DF and under the right
index of C and D.




6. Multiplication and Division Combined

axb

In problems of the type division uvsually comes first, followed by the

required multiplication because in this order end-for-end changes of the indexes

will be relatively seldom.
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345 X 22
132

300 x 20 _

g e A

Example: = 57.5 Roughly:

The intermediate result of the division 345 - 132 = 2.61 can be ignored and
the cursor must be moved directly to the value 22 on scale C, opposite which
the final result 57.5 appears on scale D.

23.7 X 4.8 9.17 X 6.55 174 X .63
e e ) St e Mimicind w2170 | 18 —— = 5.01
15 e 5.08 g 21.9

Examples:

7. Proportion

The slide rule is particularly convenient for computations involving proportions
of the form —E = % = —':— =... for the reason that with one setting of the given
ratio all the required terms can be obtained by simply passing the cursor along
the scales. The joint between the scales of the slide and the body can be regarded

as the dividing line in a common fraction.

Whenever it is possible fo express a problem in the form of a proportion this
type of computation should be preferred. So, for instance, the problem in Fig.7

7 . I ety S
can be easily rearranged fo read: %g- = % A little practice in this direction
will make the slide rule user more independent of the orthodox methods of

a
computation. It really makes no difference whether the given ratio is seinl; or =

as long as the other ratios are read in accordance with the first setting.

Example:
Conversion of inches to millimeters: How many millimeters are in 3, 5, 7 inches?

The inifial ratio is known fo be 1 in. = 25.4 mm. Hence, e);pressing our problem

: K 1 3 5
in proportional form, we write: — =—=— = —
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Fig. 8

Once the given ratio 1: 25.4 is set on the rule the other terms can be found by
merely moving the cursor as required: x = 76.2 mm, y = 127.0 mm and
z = 177.8 mm.

Exercise5'?-7'—0 L _ﬁ.& L kg 3 454 i X4 e 31.5
AT 8T 25T T o R R
Results: x=15.54; y=1029; z=159.9; x'=590; y =69.4

8. The Reciprocal Scales Cl and CIF

These scales are the counterparis of their respective companions C and CF,
except that their graduations and numerations run in the opposite direction. By

; 1
virtue of this arrangement the reciprocal i of any value x on the fundamental

scale C can be directly read on Cl under the cursor line. The utility of this
feature consists in being able to convert at will a multiplication to a division and
vice versa.

So, for instance: la><5=4-:—-;—und 4=5=4 % 1?

Expressions of theform a X b X ¢ or are solved by alternate multi-

a
bXxcxd
plication and division. In the course of a computation we may freely switch
from the group of scales C, D and Cl to the group CF, DF and CIF to avoid
resetting the slide in multiplication. The following example shows such a situation.
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Example: 185 x 6 X .95 = 1054 Roughly: 200 x 6 X 1 = 1200
Rearrange the problem to rend:—i?: X .95. Usethe cursor hairline to bring 185

on scale D info coincidence with 6 on the reciprocal scale Cl, as in any ordinary
division. The subsequent multiplication by .95 is best performed by use of scale CF
and the product 1054 is then read direcily above on scale DF.



197 x 875 x 21.8 = 376.0
612 % 13.82 X 07h= 626 (6x10x 01= §)
7 x 8 x 9 S (510 x 10 = 500)

In the last example, 7 X 8 X 9, the comphh:ﬁon is simplified if made with
DF in conjunction with CIF. In the example 3

Examples: (20 x 1 x 20 = 400)

8.5 10
— = 162 —_—
69 x 76 L (100 x1 0'1)

the first division 8.5 =~ 69 is done with DF and CF and the second division by .76
with the Cl scale. The answer is instantly available on D. Only one setting is
involved in this solution.

7.93 39 X .21 X 78
L e T —_— = A
I 5 2.98 % A3 e 5.3 T

9. Solution of Examples Explained in Diagram Form

In the following text an easily memorized method of explanation will be em-
ployed, so as to show the siep-by-step operations in the respective computation
with greater clarity than in the customary form of a facsimile slide rule. Parallel
lines bearing their corresponding marginal labels represent the scales and the
following symbols will make the diagrams very easy to interpret:

o Initial setting
v

® Each subsequent setting - Q_?DS‘ b
® Final result CF -
® New sefting of an inter-  ¢/F =
mediate result c g 1
T x
_*__Reverse the rule c %
s Direction and sequence 2 Leme %

of movements Fig. 10

Hairline of the cursor
Fig. 10 shows how the example given in

Fig. 9 will appear in the improved form
of diagram.

185 X 6 X .95 = 1054

10. The Folded Scales CF, DF and CIF

We have already had occasion to use these scales in multiplication and division,
in which class of computations they are principally employed. The folded scales
are identical fo the fundamental scales, except that any location on one type of
scale is laterally displaced by the value 7 = 3.14159 relative to the other scale.
This means that the value 7 on the folded scales is exactly matched with the
indexes of the fundamental scales. Consequently the graduation runs from z
past 1, in about the middle of the rule, to = at the right extreme. There are
short extensions of the graduation at both ends for greater convenience.

The effect of this folded arrangement consists in simplifying various computations
involving the factor z. It will be clear that any switch-over from D to DF auto-
matically supplies the product of any number set on D multiplied by the factor 7.
Conversely then the division by =z is achieved by following the opposite course.
Typical Problems: Circumference of Circles C = dan

Angular Velocity o=21x

Area of Circles A=rlz
The first two formulas can be computed with one cursor setting, whereas we
must first perform the multiplication r X r with the scales C and D to find the
circle area (see also chap.16.2 on p. 25).

10

SR

Example: DF ?19,55 X
CF nx

To find the area for r = 2 in. LT i ST DA S SR
X

A=2%7=2%2 X n=1256sq.in. Tl ol AR M
To find the circumference cl LRk, ;777%
C =477 = 1476 c 1 i L
e
-
Fig. 11
Examples showing how to use the DF ; T X
reciprocal scales: cF (AR A e
CIF ueitlt iy
i N S T | i
b 2n ¢ "

11. The Scales A, B and K
11.1 Squares and Cubes; Square Roots and Cube Roots

When the cursor hairline is set to any value of x on scale D, x2 can be read on
scale A and x* on scale K. In the opposite order the switch-over from K to D
furnishes the cube root and from A to D the square root.

Examples:
x?
a)i =4 2 =8 o
b) 3.272 = 10.7 3.27° = 35 log
2 3
<) ]/; =3 ]/2_7 =3 K of] 7 £ o
2 - iR
d) ]/51 'y 7‘11‘ V364= 714 g l2 OF] l.Tl? ®) 714 :

Fig. 13

Whe_n it is clear that the root concerned will fall within the range 1 to 10 no
special calculating rules need be applied. This is the case when the radicand of
a square root lies somewhere between 1 and 100 = 10? or the radicand of a
cube roof between 1 and 1000 = 10%. In all other cases it is good policy to reduce
fhet cy.:uniify under the radical sign to the more handy form of a power of ten
notation.

Examples:
2 2 h AR 2
J/3200 = /100 x 32 = /102 X 32 = 10 X }/32 = 10 x 5.66 = 56.6
3 3 e e - 3

e 270 270 1 s MG 5
YW= 1/ - P - L

1000 i R date 10 i

2 2 3

ey ol
Y1795 =10 x /1795 = 1215

1 —_—
e ting e
= V22 = 492

11



2 A T
740 =10 X 1/37.40 = 61.2 Y7.63 = 1.970

2
V3
- EA - S g - 3.

Y219 =10 x Y279 = 1670 Y028 = 1 x 128 = 304
2
Jo

2 : el
; 9.48 = .308 Vit = 7.61
11.2 Multiplication and Division with the Scales of Squares
Multiplication and division can also be done by using the scales A and B by the
same process as that used for C and D, but the precision obtained will be some-
what less refined. In many problems beginnig with a squaring operation it is an
advantage to be able to continue the computation on the A and B scales.

It is recommended to repeat the examples given in the chapters on multiplication
and division on pages 5—7 with the scales of squares for practice in the use of
these scales and in order to judge the accuracy here obtainable as compared
with that of the fundamental scales.

12. Trigonometric Functions

The functions of an angle are obtained by adjusting the cursor to the angle value
on the appropiate scale, either S, T or ST, and reading the function on the
fundamental scale C, or on D provided that the indexes of both scales coincide.
Reversing this process we obtain the angle corresponding to the respective
function.

In the setting of angular values it must be borne in mind that the trigonometric
scales are divided into degrees and decimals of degrees. Attention must be paid
to the varying magnitude of the scale intervals as in using the fundamental
scales.

The slide rule only gives the functions of angles in the first quadrant. To reduce
angles of other quadrants fo the first, consult the following conversion table.

+ o 90° + o 180° + o 270° + o 45° + o
sin + sina -+ cos o F sina — cosa | cos (45° F @)
cos + cos F sina — cosa + sing | sin (45° F &)
tan + tana F coto + tana F coto | cot (45° F @)
cot + coto F tano + cota F tana | tan (45° F @)

12.1 The Sine Scale extends from < b g d
5.5° fo 90° and also contains the 5 h b 2
cosine values in red numerals, 8 x2
running backwards from right to T <lg
left. All sines read on the funda- ST ey
menfulusc’c'tles must be given the G Bae P
prefix “0.”. s 26° Q300 =sin
Examples: a. sin 30° = .500 c ©0259 (0438 0500 ©0733 X

b. sin 26° = .438 o %

C, cos' 752 o =.259 :

Fig. 14
d. cos 42.8° = .733 iy

122 The Tangent Scale is numerated from 5.5° to 45° in black and, in
opposite direction from 45° to 84.5° in red color. For angular values in black
read the tangents on scale C, pre-fixing 0.

12
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The tangents of all angles « > 45° (red numeration) are found on the Cl scale

(red numeration) since tan o = These values are always

tan (90 — a)
> 1. With theslide “in neutral”, readings can also be taken from scales D or DI

The formula cot o =

s governsthe rule for finding the cotangent of an angle.

Therefore read the cotangents on Cl for angles @ < 45° and on C for angles
« > 45° (or on DI and D, respectively).
3

a

A T T T x2

4 (Lsu" J)u" (L 8,25° i
a. tan 14° = .249 T 825 iy
cot 14° = 4.01 ST 1 =tarc
tan 81.4° = 6.61 B <ssin

c 1 0249 (90399 X

o _'1 ? X

ol 6,61 401 l i’(

Fig. 15 Slide in “‘neutral position”

b

v
2
b. tan81.4° = 6.61 ¢ 5 ! AN /gFF_ x
. 0. s \ T Blé 219\ / CIF——— i‘y

cot68.25° = .399
5T — =orc X L — lgx
A
5 —*745:}'}/ \\ 1 —@ )’T
G L] X 4 L e M AR A ¢
D x 2] X

- -
Slidein operational position, read on rear face

Fig. 16
12.3 Small Angles

The following relation is applicable fo angles « < 5.5°:

sino = tana = cos (90° — &) = cot (90° — &) = o in radians

The trigonometric scale ST running from .55° to 6° is graduated to radians and,
Iherefcge, enables simultaneous readings of sine, tangent and radian values on
scale C,

Example: sin 1° = tan 1° = cos 89° = cof 89° = arc 1° = % =.01745 radians

; 1 180
$9° ety T BT + d
2 tan 1° T 57.3 radians (on Cl or DI, respectively)

T!Ie cosines of small angles and the sines of large angles cannot be computed
directly with the slide rule. When these are involved the solution requires the use
of the series progression

ol
coso~=1— u (« in radians).

017452

Example:
P 2

cos1®=~1— =1 — .000152 = .999848

The square of « in radians is immediately available on scale B over the angle
sefting on scale ST. To find the angle corresponding to a given cosine reverse
this process.

13



Examples for Cap. 12.1t012.3:

sin 51.5° = .783 tan 37.4° = .764
cos 59.3° = .510 tan 63.5° = 2.006
sin  3.8° = .0663 cot 13.7% = 4£.10
cos 3.7° = 998 cot 48.2° = .894
cos 88.2° = .0314 tan 2.74° = .0478

The inverse trigonometric functions can be read in the reversed order
arc sin .783 = 51.5° arc tan .764 = 37.4°
arc sin .967 = 75.2° arc cot .983 = 45.5°

12.4 Conversion of Degrees to Radians

Scale ST is a duplicate of the fundamental scales, modified only in that the
one graduation is displaced laterally by the value 1—?;0 relative to the other
graduation. Therefore by following the cursor line from scale ST fo C we
achieve the conversion of degrees to radians, and vice versa. This form of
calculation is applicable not only fo the small angles discussed above but to
large angles as well, by virtue of the decimal subdivision of the degrees,

since the displacement of the graduations by o simply a constant

multiplication factor. 180
Any sefting of an angle o may also be regarded as representing .12, 10¢,
100 o etc. and the decimal point in the radian is then placed accordingly.
For instance: J4° = .001745 radians 1 PERR
10.0° = .1745 radians tan89.5° = —— = ——-=1145
100.0° = 1.745  radians tan.5° .008725
When small angles are given in terms of minutes and seconds they can be
b 1°
converted to decimal paris of the degree as follows: 1" = % and 1’ = Sioh.
The marks ’ and ’* on the scale ST give a means of direct computations of
radians, when minutes or seconds are given. They are derived from the con-
version factors:

1
L ¥ 60 = 3438 for minutes, and % % 60 X 60 = 206265 for seconds
T
arco (x in radians) = E:Trwf_easts;m? or o = arce X minutes gauge’
arc o (e in radians) = m or o' = arca X seconds gauge’’
-
Examples: A x2
22 8 il
227 = —— = .00640 radians T =xtg
3‘38 ‘minufes gauge
280 ST — @ minuasgongr _qare
3807 = ——— = .001843 radians s <t sin
206265 c 1 x
.0045 radians = .0045 X 3438 = 15.47" 0O 22 gm x

Fig. 17

The gauge marks for minutes’ and seconds’” are a useful aid in solving circle
sectors for radii r, arc lengths b and central angles .
nr.—lx auge mark b-—L

r g gauge mark s

Examples: b
o =;—i X minutes gauge’ = 45.8"

4 Fig. 18
R ks y;

~ seconds gauge”’
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13. Trigonometric Solution of Plane Triangles

The law of sines is a convincing example
of the efficiency of the slide rule in com-
putations involving proportions.

Fig. 19
v
A T i x2
a b c e | ‘ Y
— = — - T =249
sine sinff  siny | |
ST 1 1 <tarc
s o (L] I <t5in
c
D a b G
Fig. 20

By setting the given angle on S opposite the given side on D, the other ratios are
immediately in coincidence, i. e. the angle corresponding to the given side or
the side opposite the given angle are directly available.

In practice this form of computation is mostly concerned with right triangles.

In this partficular case we obtain = 90°, hence siny = 1. With & = 90° — B
and B = 90° — o the law of sines is therefore rearranged to the formula:

B
SRR e - D
sine sinp 1 cosfp cosx ¢ 0
’ a
and further: tano = e o°)
5 A b e
Fig. 21
Depending on the given elements there are two basic operations, viz.
A. Given: Any ftwo parts (except L ok o
case B). 2 x
B. Given: The small sides a and b.
==tg
Example for A: Given:c =5 b=4 ST <arc
Required: a,a, f s 5315°(red) 1 5315%(black) 4 oin
ORI M e s
1 — sin 53,15°  cos 53,15°
Fig. 22

Set the slide index (sin 90° = 1) of scale C over the hypothenuse 5 on D. The
required values a, o and B can now be read by merely moving the cursor.
Over the side 4 on the D scale find f = 53.15° on S (black numerals). It makes
no difference whether the next operation requires fo find the side 3 on the D
scale is the sefting of the cursor to & = 90° — 53.15° = 36.85° on scale § with
the black numeration, or its direct setting to the cosine 53.15° on the red nu-
meration.

When the given elements are one side and one angle, the first step consists in
aligning the side fo the opposite angle; the following operations are then as
outlined in the above diagram and the hypotenuse is found under the slide
index on D.
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In some cases it will be found convenient to use the DF scale instead of D fo
avoid end-for-end changes of the indexes. All sides then appear on the DF scale.
The method itself is unchanged.

Example for Case B: Given: a=3,b=4 -

To find: ¢, o, s : ;5
First solve for o from the given sides: T ’l‘“‘ e <tg

tano = % = % o Te

-] <tsin
or, better, in the proportional form: c x
S b x

1 tanao i

ig. 23

Set the slide index over the value 4 on scale D and move the cursor to 3 on scale D.
Read the angle o = 36.9° by following the hairline io scale T. The next step is

to find c by applying the law of sines in Sincethe cursor is already

Vg 3

1 sin 36.9%
!ocuted over the value 3, we now shift the slide so as to bring the angle 36.9°
in scale S under the hairline. The answer ¢ = 5 can now be read on D under
the slide index.

In cases where o > 45°, with a > b, the computation runs as described above
and invariably begins with the larger one of the two sides. In this case, how-
ever, we must read the complement of the angle (red numerals) on scale T
and consequently set the cosine (red numerals) on scale S in the next step.

In order fo clarify this kind of computation and avoid mistakes it is useful fo
visualize the particular triangle in your mind’s eye.

Example: Given the right triangle in which: Solution:
a = 10.63 b= 1938 o = 28.23° c = 22.47
a =467 b = 16.5 o= 70.53%" ;. c = 49.5
CcmiF8.2 0 i e 207 a = 30.2 b=723

The two classes of solutions for right triangles discussed in the preceding text
are of particular significance in problems involving coordinates, vectors, or
complex numbers. Such problems invariably require conversions of rect-
angular coordinates to polar coordinates and vice versa.

These conversions occur quite frequently in electrical engineering problems
for the reason that, in the component form Z = a + j b, the values are easy
to add or subtract. The exponential form Z = r/p is equally convenient for

performing multiplications and divisions as well as in finding roots and powers.

y
Coordinates: Ax, Ay < r, ¢ r by
Y
See example for case B (Fig. 23)
b 50 &
ax fi
Fig. 24
Complex numbers:
Z=a+jb=re? = rlp
Z =45 +j1.3 = 4.68/16.13° 4 b
Z = 6.7/49° = £.39 4 | 5.05
s 90
a
Fig. 25
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14. The Log Log Scales LLo-LL3 and LLoo-LLo3

All Log Log scales are used fogether with the fundamental scales C and D.
The et *-scales LL0, LL1, LL2 and LL3 cover the range 1.001 to 100,000 and the
e-X_scales LLoo, LLO1, LL02 and LL03 the range .00001 to .999.

The e™*- and e*-scales are reciprocal to each other. Reciprocals of numbers

< 2.5 can be read with a higher degree of accuracy than can be expected when
using the scales Cl and CIF, e.g.: the reciprocal value of 1.0170 is .98328.

Attention: The Log Log scales supply immutable values, either whole numbers
or numbers with their fractional parts in decimals. This means that when we
read 1.35 on the scale, this is the only value concerned. It is not decimally
variable as in dealing with the fundamental scales.

14.1 The 10th, 100th and 1000th Powers and Roots

The Log Log scales are mutually coordinated in such a manner that, in passing
from one scale to the adjacent scale, the tenth power or the tenth root of a
number sef on the one scale can be read on the neighbouring scale, depending
on the direction in which the reading is made.

The examples depicted in Fig. 26 will make it clear how the tenth and hundredth
power or root of a given number can be determined by the simple process of
following the cursor hairline fo the appropriate scale. For greater clarity the
scales LL00 and LL0 are here shown grouped together with the other Log Log
scales on one face of the rule. .

Examples:
10
10157 = /1015 =1.00149

1.015" 1.015
1015 = 1.1605

1015199 — 443

1

o o 10157190 = 2957
1

T 1.0151° = 8617
1 -1

o = 1o = 98522
1 1

AT I

J/1.015

= 1.015—1 = 99851

Other reading examples based on the range of numbers in Fig. 26:
100 100
V443 =11605 98522'0 = 8617 |/ .2257 = 98522 1.00149'°° = 4.43

Examples such as the above will hardly ever arise in practice. They are used here
to make the system governing the Log Log scales easy to comprehend.

14.2 Powers y = a*

Raising a number fo any power is done exactly as multiplications are performed
with the fundamental scales.
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Procedure:

a) Use the cursor to set the index of scale C to the base ““a” on the appropriate
LL scale.

b) Shift the cursor hairline to the value of the exponent on C.

¢) Read the power y under the hairline on the corresponding LL scale. (See the
chapter “Reading Rules’.) ;

When the slide is set fo the value of the
base “a’” we obtain a complete table of
values corresponding to the function
y = a*. Fig. 27 depicts the setting of the
slide to be made for the function SR

y = 3.2% showing the cursor aligned jjp— — | - _ 0299708 _ _ _ .0001x

to the exponent 2.5 and its decimal 097134

variates. Lo ¥ At
Ll 07476 e0lx

0.054C

Examples: Reading on scale EL;J ::

3225 =183 LLs . 25 x

305 1 = 1388 LL2 0 o X

32985  — 10295  LLt o A€

3292 _ 1002912 LLo Lz = s

32725 = 0546 LLo3 Lt ea aii

328 = u76 LLoz to—- — o — - @MNEM _ _ _g000rx

32795 — 97134  LLot -

3279025, — 997096  Loo Fig. 27

Reading Rules:

a) For positive exponents set and read in the same group of scales LLO—LL3 or
LLoo—LLo3 i. e. use scales having numerals of uniform color. For negative
exponents we must switch over from one group of scales fo the other (alter-
nating the colours).

b) In conformity with the labels given at the right end of each scale, read on the
adjoining scale with the inferior label for each place that the decimal point
in the exponent is moved to the left. (Cf. example Fig. 27.)

c) When the base is set with the right slide index, all readings must be taken
from the adjoining ‘‘higher” labeled scale.

When 0 < a < 1 the powers with positive exponents are found in the group
LLo0—LLO3 of the Log Log scales, and with negative exponents in the group

LLo—LL3. -
LLot T- T e001x
Lloz re 685 $ﬂ35 e-0lx
Llos : er
Examples to clarify the reading rules: 8’:" nx
68527 = 36 685727 =278 ¢ ' P E'
14627 = 278 146727 = 36, U2 el o
LL2 ALE ?2_73 e0lx
LLy e00x
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o =

Figs. 28 and 29 show the same exam- 138
ples, but in Fig. 28 the slide is set with  ¢r ¥
the left index whereas in Fig.29 the ¢ ‘217

right index is used. YT | 228 Pai
2 Y146 edlx
Ly T 1
i ik
IL -
Examples: 1.02124 =  1.0512 R
11624 = 5485 3% = .0081
24353 = 550 A4 = 123
21433 = 1493 4928 = 1357
243733 = 6698 4912 = 425
8537 = 2740 4912 = 918
25426 = 000223 931 = 0.691
1.0023%7 =  1.00854 93751 = 1.448
ey = 0432 96257 = 709

14.3 Exceptional Cases of y = a*

Since the range of the Log Log scales is restricted, cases will arise where the
exponent is either too great or too small fo permit direct reading of the power.

y > 100,000 and y < .00001

When the power corresponding to a base with a large exponent is greater than
100,000 or smaller than .00001 the alternative consists in breaking up the
exponent info several factors.

Example:

34419 = 31451847 — (31492 x 3147

— 9552 % 10° x 3.02 x 108 = 2.76 x 107

For expressions with negative exponents the procedure is, of course, analogous.

999 < y < 1.001
When for a small exponent x, the value of the power is either smaller than 1.001
or greater than .999 the answer is obtained by use of an approximation.

From the series expansion
+x X x2 455 3
at* =14% 73 logea + 20 (logea)” £ 37 {logqa)"+--=»

can be derived at* =1 & x loge a for | x| €1

If the index of C is set opposite the base value a on LL by aid of the cursor line,
logea on D (without reading its value) can be multiplied by x. The product
added to 1 or, respectively, subtracted from 1 gives the power. The smaller the
exponent the more precise will be the result.

Returning fo our previous example with the base 3.2 (Fig. 27), we can now
continue, e. g.: i

=~ 1 4+ .00025 X log,3.2
=~ 1 4 .0002908 = 1.0002908

3.2—00025_ 1 _ 0002908 = .9997092

3_2.000 25
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When the decimal mutations of the exponent are carried still further, only the
number of ciphers or nines after the decimal point will vary in the result:

3.2:000025 _ 4 00002908

999 < a < 1.001

When, in the type of problem y = aX, the value of the base is approximately 1
and within the range 0.999 < a < 1.001, the solution is worked out by use of
the approximate formula

X =(1£n*=1+xxlogg(1£n) log (1 +n)= + nfor|n] <1)

It.is immaterial whether, in the here discussed range log.(1 + n), is set in scale
LL or the value n in scale D, in consideration of loge (1 + n) = + n. The smaller
the magnitude of the value n the closer the correctness of the approximation.
It follows, then, that where the LL scale breaks off scale D can be used as the
continuation of the LL scale, in this case substituting + n for 1 + n. When the
index of the C scale coincides with n on the D scale this sefting is practically
identical with the setting log, (1 + n) within an imaginary additional LL scale
covering the range 1.0001 to 1.001 or, respectively, .9990 to .9999 and so on.
The computation then confinues by looking up the power as previously dis-
cussed. Actually any answer read on the D scale is derived from a simple
multiplication but has to be complemented by the addition of ““1” or the sub-
traction from 1", as the case may be. When, with growing exponent, the power
falls within the readable range of the LL scales readings are taken directly from
these scales. ¢

Examples: 1.00023%7 = (1 + .00023)%7 = 1.000851
Set on scale D, read on scale D and add 1

1.00023% = 1.00855

Set on scale D, read on scale LLO

9997737 = (1 — .00023)*7 = 999149

Set on scale D, read on scale D and deduct from 1

99977% = 99154
Set on scale D, read on scale LL0O

1493 = 1.0554 (Set on LL2, read on LL1)
119931 — 1.00540 (Set on LL2, read on LL0)
1199931 — 1000538  (Seton LL2, read 538 on D)

1.0048"? = 1.00912 (Set on LLO, read on LL0)
1.0002142 = 1.000882  (Sef on D,  read 882 on D)
9997942 = 999118 gei 21 on D, read 882 on D)

14.4 Powers y = eX

When the indexes of the slide and the body scales coincide the rule
is adjusted to the equation y = eX. The base e = 2.718 on scale LL3 being
always aligned with the index of scale D, it follows that any power of e can be
found by corresponding moves of the cursor to the exponent on scale D. The
sefting used in Fig. 26, for instance, would be correct for the exponent 1.489 and
its decimal variations

el489 _ 443
e 1489 _ 1 1405

e 01489 _ 1015
001489 _ 1 001489

With the last example we again arrive at the equivalence of % = 1 + x.

20

x —
14.5 Roots a = ]/y
Expressions containing roots are often easier to handle when changed to the
form of a power. In this case set the exponent on the Cl scale.
a5 AL 1L 1 o 1 ek
Ve =e"=13307 55— mo P =057 55— =e 3 =754

Ve Ve
Inversely to the process of raising a number to a power we can also find the

roots of numbers by using the Log Log scales in the same manner as the funda-
mental scales are used in division.

X —
From y = a* we can derive }/y = a.

Procedure:

a) Set the radical index on C opposite the radicand y on scale LL.

b) Read the value of the root under either the left or the right slide index on
the appropriate Log Log scale.

The principles of the reading rules on p. 18 are also applicable in this instance.

Bear in mind that when the reading is taken under the right slide index, the

answer will appear on the next lower labeled Log Log scale LLO—LL3 or

LLoo—LLo3.

o 1
Y21 = 524 gt i -
V 1 . oo~ — 4 — — — %ﬂg—“"é _ L g0001x
Tlida 1 i Lich 4096122 e001x
]/21 = 1.48? 7 I T $7%6 i 406734 o0
V21 s 00192 5
oo 1 X
V21 = a3 T 96122 mx
ya x
i 1 ex
V21 = 1.00396 770 = 99605 e
' 21 e007x
14.6 Logarithms — — gbpo1x

Logarithms to any base can be de-
termined with the Log Log scales. The Fig. 30
logarithm corresponding fo a number

is obtained when the process of raising

a number to a power is reversed.

y =a* ; (% 1 X x
x = logay (Read: Logarithm of y to  © s
the base a) ey UI 4 4
Finding a logarithm is identical to a

Initial Equation: y = a* Fig. 31

problem in which the exponent of a
power is fo be determined from the
given number and the base. The
course to be followed in solving this

ik
class of problems is easy fo understand g ! -
by studying the explanatory diagrams s ak y o*
depicting first the process of raising a I
x

number to a power (Fig. 31), and then

r:d f;g; inverse operations (Figs. 32 S Vy— g Fig. 32

x X
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Procedure:

a) Place the cursor hairline over the
value of the base “a” on the

Log Log scale.

b) Draw the slide index under the
hairline.

c) Shift the cursor to the antilogarithm
y on the Log Log scale.

d) Read the logarithm x under the
hairline on scale C.

Reading Rules:

a) Each departure from one LL scale
to the adjacent LL scale, in the
order LL3, LL2, LL1, LLO or respec-
tively LLo3, LLo2, LLo1, LLOO causes
a shift of the decimal point by one
place fo the left for the reading of
the logarithm on scale C and, in the
opposite order by one place fo the
right.

b) Logarithms are positive when both
antilogarithm and base are set on
Log Log scales having like-
colored numerations, and negative

when the colors are unlike.

—

The place for the decimal point is
determined from logqa = 1

When the slide index is set to the base
“a", all values to the right of “a” on
scale C are > 1 and all values to the

left of “a” are < 1.

The natural logarithms fo the base e
and the common logarithms to the
base 10, i. e. by far the most important
in practical problems, are special
cases. When these logarithms are
involved the base e or 10 is set (Figs. 35
and 36).

When in the course of a computuﬂon‘

the right index takes the place of the
left index all readings appear to the
left of the base; hence they are < 1 so
that the decimal point must be moved
one place to the left.

a) log,,50 = 1699
b) log,q 2 = .3010
b) logy 5 = — .3010
c) logyy 1.03 = .01284
d) log,, .015 = —1.824

22

C 1 x x
2} x
LL3 g ex
Second Reversal: x = loggy Fig. 33
c 1 3.0 x
o X
LLs e 185 Lgn
LL2 e0lx
L 2 001x
- -
log, 125 = 3.0 Fig. 34
c 1 02833 x
o X
LL3 = e

LL2 \+"92 elix
LLr a5

lL

1

log,, 1.920 = .2833

C X
D 1,506 ®0239 0
LLs p il ex

Fig. 35

0583 x

1Ly J\r.n 201
Lt T _Alo6 e001x
- l
log, 1.06 = .0533 Fig. 36
logg 1.27 = .239
logg 4.5 = 1.504
- = v l.'l’ ? f
LLor— Uil
T 15 405 e-0lx
LLo3- “r
OF x
GF 001283 -03010 X
fs ! 699 @ -1824 010 x
o x
LLs - 50 e*
LL2 2 ellx
w1 rm 2001
- lL CL l
Fig. 37

Practice Problems:

log,o6 =.778 logy16 = 4.0 logss2 = .5
log, 4114 = .0569 logy1.02 = 0286 logy .05 = — 3.0
log,o1.015 = .00647  log, 25 = — 2 logy 622 = — .475

The most frequently used decadal logarithms are also contained in the customary
mantissa scale L on the slide of the rule. This scale gives the mantissas only. As
in using a logarithmic table, the characteristic is determined by use of the rule
“number of digits in the antilogarithm minus 1"" and prefixed to the mantissa.
The logarithm of any number set on scale C can therefore be found directly on
scale L and, inversely, one can also find the antilogarithm corresponding to a

given logarithm. - v v

DF nx
CF. nx
logo1-14 = .0569 R O T g

L ) A 90778,
log.,6 = .778 i i i i

P ¢l 1 L

antilog of 1.699 = 50 c O fm 66 *

o
i e

14.7 Solving Proportions with the Log Log Scales

When the slide index is set to some base value of “‘a” on a Log Log scale, the
powers to any exponent and also the logarithms of any number tfo this base can
be obtained. The base a, when set on the Log Log scale, can therefore be re-
garded as one of the terms in a proportion.

141 Yy =a"

Y, = am

logy, =n X loga

logy, = m X loga EL.‘,

loga logy; legy, Lis
R R

& ihogs logey, By loge Y, Fig. 39

1 n m

When three given terms of a proportion are set, the required fourth ferm can
be read and the rule is at the same time adjusied for reading as many other
relations proportional to the first ratio as may be required. Here we have
another opportunity for applying the principle of proportion for which the slide
rule is so eminently practical fo use.

14.72

m vifteh

n L log y c 27 68 x
yu?-a _>-Iogy_.nloga-> = b o
loga LLs =9 ‘T’m L
b n LL2 ellx
i 6.8 L e001x
Y #:;‘.32'7—) 'Ii)g—y = -Io—gé...s— IL -
5 6.8 2.7 Fig. 40
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After sefting 2.7 on C opposite 4.3 on scale LL3, the result 39.4 will be found on
the LL3 scale under 6.8 of C. Modifications of this problem are, of course,

solved analogously:
2.7

Y =V 4358 or y27 — 4388

14.73

The formulas of many laws in the natural sciences can be suitably arranged to
permit solution in the manner discussed above when the change in one
variable is proportional to the logarithm of the ratio of the other variable.

Y2

log Y = const X (x; — x,)

Any change X, to x; over the increment i ;ﬁniails a change of y, to y,. When
the ratio 22 is given the designation r, i. e. the rest of the original whole quantity,

1
the above equation can'be written:

logr, logr
Ioigr=consi=i?-f-‘1== igz_.

1 74

Example: Radicactive Decay

A substance is known fo disintegrate at

the rate of 409 in 30 days, leavinga v "T
residue of 609. Lo e001x
iy=30, ry = 6. L },ﬁ 0l
After how many days will 209 be left? B0 02 | ex
g = 2 - DF X

leg .6 log .2 i = rm iyl

E x = 94.5 days

14.74 : Fig. 41

For the multiplication of a constant fac-
for by a logarithm the constanton Cis
set opposite to the baseof the logarithm
on the Log Log scale. Thus atabulating
position is obtained. i

x = ¢ X logay or

loga ¥y =5

Examples: 2 X logig100 =4 ’}".’

2% loglo 1.8 = 511 Fig. 42

In electrical engineering it is often n ssary fo compute the decibel corres-

ponding fo a given voltage ratio
db = i

u1
U2

15. Hyperbolic Fonctions g

35
The unique construction of the Log L@a’m[e system enables the formation of

hyperbolic functions. The values of e’fuhd e~ * can be obtained by one sefting

of the cursor.
e e* 4 e7*
2

sinhx = cosh X =
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16. The Detachable Cursor and its Lines

16.1 The Mark 36

dJe _arso @ (@ kW @
The front face of the cursor contains a ] P
short line to the right of the center 36 A HP
line and over the folded scales. ] ko k-
The lateral distance of this line i R b
from the center line corresponds fo the ¢ el
factor 36 for readings on scale DF re- 1 i id
lative to any setting on the fundamental
scale D. By virtue of this arrangement qe=——F%——= S s 017
the cursor can be used for conversions ———— NEE s

Fig. 43 Fig. 44
1 hour = 3600 seconds
1 meter per second = 3.6 kilometers per hour
Degrees to Seconds:  1° = 3600
Years to Days: 1 year = 360 days (for inferest computations)

of:
Hours to Seconds:

16.2 The Marks for Circle Areas
The intervals between the upper left or the lower right line on the one hand and

the center line ontheother hand areequalto % = .785 i. e. the factor applicable

in computations of circle areas or round sections A = d? % (Fig. 44). To find

any required circular areq, set the lower right or the center hairline o the given
diameter d on scale D and read the area under the center line or the upper
left line, respectively, on scale A.

16.3 The Marks kW and HP

The interval between the upper right line and the center line is equivalent to
the coefficient .746, applicable fo conversions of HP to kW (Fig. 44). Hence,
when the center hairline is set to 20 kW, on the A scale, then the upper
right line indicates the equivalent in HP viz. 26.8. Inversely, when the short
right line is set to 7 HP the center line will produce the equivalent 5.22 kW.

16.4 Detaching the Cursor

The hairlines of the two cursor windows are precisely matched so that the ser
can pass from one face of the rule to the other when required in the course of a
problem. The accuracy of this adjustment is not disturbed when the cursor is
taken off for cleaning. To remove the cursor, use both thumbs to press the tips
of the bar marked with arrows gently downwards. This releases the snap
fastener and the cursor can be taken off the slide rule (Fig. 45).
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16,5 Adjustment of the Cursor

Even though the cursor hairs are reliably adjusted violent jarring of the rule
may throw them out of alignment. In such a case loosen the four screws on the
cursor face with the HP mark. Turn the slide rule over and shift the other
window about the center snap fastener until the hairline is accurately aligned
to the index lines of the scales. Holding the adjusted window firmly in position,
turn the slide rule over, and adjust the first window in a similar manner. Tighten
all screws carefully to prevent renewed dislocation of the hairlines.

17. Treatment of the ARISTO Slide Rule

This instrument is a valuable calculating aid and deserves careful treatment.
Scales and cursor should be protected from dirt and scratches, so that the
reading accuracy may not suffer. It is advisable fo give the rule an occasional
treatment with the special cleanser fluid DEPAROL, followed by a dry polish-
ing. Avoid chemical substances of any description as they may spoil the scales.

Do not leave the rule on heated surfaces such as radiators or expose it for a
greater length of time to powerful sunlight. Deformations may occur any
temperatures above 60° C (140° F). Rules so damaged will not be exchanged
free of charge.

All rights reserved, including that of translation.
This booklet, or parts thereof, may not be reproduced without permission.
© 1954 by DENNERT & PAPE « ARISTO-WERKE - HAMBURG
8th Edition - 051061 - Printed in Germany by Borek KG « 1828
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