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IMFORTANT NCTES

1. Although the single relief diagrams are based upon new
degrees ( 4008 ), the angles may also be read off in 360
degrees ( 3%60° ) from the narrow edge to the risht. .

2. The "special type symbols" in chapters 15 e-g and 15m-p
are to be interpreted as follows:

Sin = sinh ( hyperbolic sine )

€ = cosh ( hyperbolic cosine )

g = ' tanh ( hyperbolic tangent )
Ctg = cotanh ( hyperbolic cotangent )
AIrSsin = read = " area sinus hkypcrbolicus "

ete. for A3y “eten




COMPLEX CALCULATOR.

Cestell No. 989.
INSTRUCTIOHNS FOR USE.

A. W. FABER - CASTELL + G3TEIN BEI NURNBERG

THE COMPLEX CALCULATCR.

The system in which complex numbers are represented by points

in the "Gauss Plene" is now widely used both in pure mathematics
and in the technical sciences. In electrical engineering, in
particular, the method of calculation based on complex numbers

has become absolutely indispensable in drawing the vectors for
alternating current values. The complex plane of nuobers, however,
is nothing more than a medium of representation and is hardly
suitable for carrying out practicel calculations. The use of

the formula

In (al + jaz) = In (o] e 37) = Inlt] + i

enables compiex numbers to be suifably indicated in a semi-
logarithmic system of coordinates. In converting the complex
plane of numbers into the semi-logarithmic system we obtain the
basis for a practical medium of celculation, which at the same
time has ihe imerit of rewaining "eynoptical".

On this apparatus, known briefly ze the COMPLEX CALCULATOR, the
aforementioned semi-logarithmic s;stem of co-ordinates-is shown

in red on a base plate. In accordunce with Inlul + i@ the angle
(versor) appears in linear form as the ordinate, while the absolute
(vector) value is marked logarithnically as the abccissa. The
converted lines from the Gauss pisne of numbers aro marked in

as groupings of curves on this bausic grid, the real components
being shown in black and the imag'nary components in blue. The
total "calculation surface" contains all four quadraats (with

the first in the lower and the fourth in the upper zone). A
special pivoted arm or scale, of wvhich the angle can be adjusted,
enables multiplication and division to be carried out and powers
or roots to be extracted on the Complex Calcdlator, in the same
way as with the ordinary Slide Rule. As the values can be
analysed into their normal components in a simple manner, addition
and subtraction can also be effected without difficulty.



LD

Since the Couplex Calculator contains all four quadrants, thus
providing for the whole angular frequency, both harmonic and
exponentially damped oscillations can be represented by straight
lines and adequately dealt with in the calculations.

1. Representation of Complex Numbers.

Gauss Plane of Numbers Complex Calculator \
.I. 1009/ l YQe
5 & \{ ”‘_
= oss=-a®l .1 . 1 . Dl e
1 T+
Sty das i
a, —In]-‘mv'-l

1 2 3 4 5 6 l'lil

0,64 o
= (ay + 3 85) = (4 + 3 3) =5 e e 5laalia o/
The Complex Calculator indicates - for complex numbers - the
relationship between absolute (vector) value and angle (versor)

and also between real component and imaginary component.

2. Addition of Complex Numbers.

Gauss Plane of Numbers. Complex Calculator.
Jm p=a+ b
o =Y .
-
B 5 3 635
b / + 13
<5 of b | 3 26 33 ‘.
ol T~ A%,5°
5 !: — :
m_;_b‘ 5 & 8 10

o 4 e R ei? = o3 + b/} = (0,+ia) + (b, +iby) = (a, +by) + i(e;+bs)

3,16 90132, 2 24 eI1211 _ 3 16/20,58+2,24/70,5%=3,16/18,5° ~
2,24/63,5° = (3431)+(1432) = 4+33) = 5 eI = 5/418 = 5/37°

As the Calculator provides readings of the real and imaginary
components of each of these complex numbers, the said components
need only be combined and the new point traced; vector value

and versor can also be read off at the same time.




5. Subtraction of Complex Numbers

Gauss Plane of Numbers Complex Calculator
|
4 :u:l ‘ | '! ,603.5.
1V =705 e ~ 3,ﬂ}“: ]
oot =19 |2 'j. > »2afl T
- 20,59 e i - f :: :"EE “'5.
0 Fr oAl 6
24 306

;:"'H'fﬂmﬂfqi—qi-MHw—mﬂm-mqmﬁwrm

5 10164 _ 3 16 030432 _ 5/418 _ 3,16/20,58 = 5/37° - 3,16/18,5°
(44 33) - (3 ¢ 31) = (1 + 32) = 2,24 o0 = 2,24/70.88
2,24/63,5°

This is an analogous process to that involved in the addition,
except thst here the components are subtracted.

]

4. Multiplication of Complex Numbers

Gauss Plane of Numbers Complex Caslculator.

m b

+ j=a-b

A0V ADy

[alelal=l8]:0 :
Isl=laf-18] - 4%C”

1009 )

- o
TN = 7059 P - —- 8 1 50

6 AP /3'/ I N G3.
Re 0,52-20.59 A LH__-,. _:-IL 45‘5'

bl

~
Py
é

T T 4
: £ . 224 306 7.08
a-b=la ei¥ - [blei¥ = o/ - bj¢ = (a,+lay) - (,+by) = 0, b, — a;b, + (a,b,+a;b,) = [a] - [b] eI FH¥) = abjz+y

2,24 ed1:11: 3,16 39232 _ 2 24/70,58 - 3,16/20,56 = 2,24/63,5° -
3,16/18,5 = (1 + 32) - (3 + 31} = (2 + §7) = 7,08/918 = 7,08 edl:43
= 7,08/82°

When The two series A and B are gecmetrically added, with the

aid of the adjustable pivoting scale, the point is found
immediately, the result being 7,08/918 = 7,08/82° = (1 + J7)

= 7,08 e31’43. _




5, Division 0of Cowmplex Humbers

Gauss Plane of Numbers Cerplex Calculator
Jm “
I o
[ A 00 A0b
lal:lal=1:]b] - -
= lal:1ol=1lal

~~ 1009 gge
18 =9 Ua g2’
11 =705 e3,5°
o .
Re 032 = 20,59 AR .S

1

a:b = ol e : (b ei¥ = a/z :b/y = (a,+ia;) : (b,+iby)

7.08 e31143; 5,15 ¢30032 - 7,08/918 : 3,16/20158 = 7,08/820 :
X 16(18ir20 = 1 + 37 ) : (3 =+ jl) =(1 + 32) = 2,24(70158 =
2,24 e‘j = 2.24/0 L5_..

When series B is subtracted geometrically from series A, with
the aid of the adjustable pivoting scale, the point is found,

e ol 5 54 /70 68 L 2 BA/ER,ED = (1 50K 2,20 T
as the result.

6. Multiplication or Division by el¥

Gauss Plane of Numbers. Cormplex Calculator.

Jm

y=a-el W

1009
e M s
o9 =909 . . | O R N ';:':‘
I e R T e T
la —

Re 4

Qiceiy = [a| ei¥ - eit = UEE 1% = |a] eHF+d) = a/¢+%

30164, ¢30.29 _ 5/418. 1/188 = 5/37° 1/169= 5 &3°°97= 5/59,08 =

5£53°.

(4 + 33) * (0,97+30,29) = (3,88-9,88) + 3(1,142,9) = 3+34
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The anti-clockwise representation of the rotation oI the
vector @ about the angley in the Gauss plane of aumbers --
corresponding to multiplication by the unit vector ¥y -

is shown on the Calculator as a mere upward vertical displace-
ment of point a, reaching the ordinate ¢ +y at point} .

The operations corresponding to the division are then found
to be, in the Gauss plane, a cloclwise rotation of the vector ,
and on the Calculator, a downward vertical displacement.

7. Multiplication or Division of & Complex Number by a Raal Number.

Gauss Plane of Numbers. Complex Calculator.
1009 | o
‘\3 \5 ”
= \ >
o= L. .1 . P =] 370

—

a-p=p-|a| elp = p-a/@ = (a,+ay) - P = (Pa,+Ipa;)

2.5 008 o 2.5/41% = (4+)3) - 2 = 10 o0 = 10/ 419 = (B+)6)

The muitiplicatican of a complex number @ by a real numberp,
involves an increase of the vector valu: to p “imes its original
value, the argle ¢ being retained, eand cn the Complex Calculator
it takxes the form of a horizontal displecement of ithne point

. to the r¢ight, b the distance d, to the abscissa valne
at point I

Corrzspondingly, tre division involves a reductiion of the

ve:tor value to the "p-th" part of its origina® velue, the

ang:e ¥ belng retained, and cor the Complex._(:alcuiafé . it cakes

the form of a horizontal displacem:nt of the poi-n.t] -*:-%mards

the left, by the distance , to th: abscissa value IJ’/P at pointa .
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8, Multiplication or Divisiorn of a2 Complex Number by an
Imaginary Number

Gauss Plane of Numbers Complex Calculator.
my
e 180°
\ ."
ﬁ- . . m— —- ——— o — o S— | g— £ o
sk L LB @
1009 b ’/ 900
3 / L
St ° \\- *‘*r
0.64 = 4] p—— - - e — . ——e H 67.
;’_‘——‘ "-m..1 b
--I.e al + Re 1 2 3 4 5 & 8 10

eI®/2. 5 _ 1/1008 = 1/90°; e3*/2 . .3 = 1/2008 = 1/1800, e"J'/z‘
-j = 1/3008 - 1/270° etec.

. et
a-jb = |alei? - 'b ei%2 = a/g - b/100° = (a,+iay) - ib = (—a,b + ja,b) = ja - b el® + =/2) = ab/ p+100%

S e086 . 2 oin/2 = 5/419 . 2/100% = (6+]3) - 2 =10 e = (—6-+j8) = 10/ 1419

The operalion carried out on the Complex Calculator corresponds
exactiy to that involved in the multiplication of complex numbers,
i. e. to the geometirical addition of the distances A and B.

The division takes the form of a geometrical subtraction (as in
the case of the division of complex numbers).

9. The Reciprocal of a Complex Nuxber.

Gauss Plare of Nuamhels. Complex Caliculator. .
0!

02 03 04 1 36 ]
0’ 2 L0500 °
my ~ : *'ﬁ °
W% -0 0A e B BOS SR, S | 323

1 nra=iiga Y ke

= / Th"'

a ] 4 )
30 , 270
1008 ‘\‘ Es 9ou

. 21T |
6::‘-“' e e = —-. .‘/ 370

A H s 12
Re 1 e
[

1 SR ey g PREE
. lajep ~ olg T etis, G S S N

1 1 o 1,5

= 15,64
- = - = 032—j02% = 04/ —41% = 04/359% = 04 o™
2,5/ 419 2415 625 625 /




The operation fo forming the reciprocal of a complex number
corresponde to the divieion of i by the value in question,
and is carried out on the Complex Calculator by a geometrical
subtraction from point 1. It must be borne in mind, however,
that the 4th quadrant of the preceding period is not shown on
the plate and must be replaced by the 4th quadrant to be
conceived of as displaced towards the left by one decimal »
place (or by two where necessary).

10. Raeising a Complex Number to a Given Power.

o = (la] ¢i?)" = (a/ )" = (0, +i0)" = [a|" - ¢i"? = a"/np = 3/y
@26 ¢/%4%)? = 224/295% = 2+i1)? = 24j11 = 11.3e"7 = 113 /80,50

Gauss Plane of Numbers. Complex Calculator.

Jm .

”~ Im: ‘ l l.l u ”.
1,39 = M5 .- - — —t—t - . °

\\ rﬁjﬁEA l" 4| ”05

~ .| °
41 = 29,59 | | 26.5
041 = 295 ._-_A.."_" ""—--,.___P 1
1
1 21 3 4 SeTEW BB

2,24 1n3

Powers are found on the Complex Calculator by placing distances

A by side the namrber of times corresponding to the exponent.

For this purpose it is of advantage to employ a linear graduation
(e. g. the In scale) cn the pivcting scale. '

LY. To Find a given Root of a Complex Number.

The method for the extraction of roots emerges from the
preceding diagram, as a reversal of that employed for raising a
number to a given power The division of the distance A --
measured with one of the scales o? the pivoting scale -- should
preferably be carried out, as a subsideary calculation, with an
ordinary slide rule.

Vi= Yo = "Yary = Yutm = Yo ="Yx w10 = ale = laleiw = e
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12. Pinding the Logarithms of Complex Numbers.

In n-; In(la| ei?) = Inja| = E ¢ + j2kn whereink =0; +1; +2 .. .

‘ =, 81 e Fite

¥We have: |n|-|ulz;ln—1-|u:ln(-l)-lT_ )

In(4+33) = In(e3%68) 3,61 4 3 0,64 = 1,74/24,18 = 1,74/27,7°
30,377 ‘

The natural logarithm of the absolute value @ can immediately

be read off from the top of the pivoting scale, by the aid

of the In scale (linear graduation up to 4.6).

The Complex Calculator taus also enables powers and roots
to be found with fractional exponents.

(+3)'? = (5e064)12 w3 1nj = 1.2- In (5e104) = 1.2 (1,61410,64)
Inj = 1,934+j0,77; 3 = 6,9 ¢°77 m g9/ 49,09 = 4,95-+)4,81

13. The Harmonic Oscillation.

A line parallel to the axis of the ordinates represents a
rotating and constant vector -- and thus a cosine wave when

t”e intersecting points of the black curves in the system

are referred to, or a sine wave where the readings are based

on the points of intersection on the blue lines. This method

of representation, at the same “ime, provides a clear picture
of the interrelationship of the two plane oscillations of the
same applitude, which are perpendicular to each other and which
are comple.ed to form a circular oscillastion.

The two lower scsles on the adjustatle pivoted scale -- which
correspond to the graduations o7 the ordinates -- also provide.
a helpful reans of representing leading and lagging oscillations.
In this cace the pivoting scale is placed parallel to the

axis of the ordinates and then noved in the appropriste
direction (according ro whether we are dealing with a lead

or a lag).

By adding together the individual values we can determine
both added and multiplied superimposed oscillations.

14. The Exponentially Tamped Oscillation.
A line which is inclined in respect of the axis of the
ordinates represents -- on the Complex Calculator -- an

exponentially damped oscillation with a danping decrement
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of & governed by the angle of inclination. To set the
Compiex Calculator to a damped oscillation of this kind,
the adjustable pivoting scale or arm, together with its
guide, is detached from the vertical rule; it is then
turned over and replaced in such a manner that the hinged
scale is then to be found to the left of the vertical
gelide. The adjustable pivot-point is then in the vicinity
of the lower edge of the Calculator. The pivoted arm should
now be so adjusted that ite centre line coincides with

the "10" of the lower basic scale for real vaslues and

with the required damping decrement of the scale on the
upper edge of the Calculator. The centre line should be
displaced so that it comes to rest over the initial vector’
value R; readings can then be taken of all indermediate
values from O to 2%f -- both as vector value and versor
and as real and imaginary components. If further readings
of the damped oscillation are required beyond the first
period, all that is necessary is for the vector vslue r,g
obtained at 2X to be transferred to the lower basic scale,
the centre line of the adjustable pivoted scale then being
set to this new value. The continued application of this
process enables the oscillations to be ascertained to any
extent desired -- of necessary until the deamping is completely
terminated.

For the exponenteally damped oscillatiog jg have the formula:

Y—oz" “R(cos ¢ + | sin ¢) OI‘ Y wa W R(ccn(mt)-’risin(mi})
We also have: -

r-eE.Randx=r.cosr or y =r . J sing
A further illustration is now given in connection with

an exponentially damped oscillation with an initial vector
value R of 10 and a damping decrement 4% of 1:

In tais case we have the following equatiolé:

For
Iw-h Y—o“-10(co|1::+||.ln2n)
e Y = 10/e - (1 + j0) = 10/e = 3,68
P = Y-"-‘o 3
for & (cos &r + | sin 4x)

Y = 10/e*= 10/7,39 = 1,35

The damping decrement is as follows:

Q"“L-ln"-.... 10
fax LT 368

The function takes the course shown in the accompanying table
and diagram.
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Exponentially Damped Oscillation (wherea’ =1 and R = 10).

?

-8
Y=e "R(cosw—Hsinf)—-: 10(1:03 +]tinr)r=e ‘Rix=r-cosg; by =r-jsing
' 10 368
Damping decrement® In ™ In :., = In 3.68 In 135 =ne=1
Jersor|$ l ol::.:'}u.o’ 3 133.3‘1u.s’| n 2323%266.6° ’25 m 1'3“612.- 433,37 466,6° 5—,1‘ 533,37 566,67 3- 633,39 ge6,6° 71-' 733,39 766, sF
Jector: r Iv_o,usii.sojv.no‘ 720 | 6,65 6,10 ssolus 475 440 wola_jun 392 285 263 243 223 205 190 173 1.40 urta
teal % . -

>omponent: x [1]so0 ‘25f° -3.60 5751410;4!! 260 0 220 anl:uil.vs 155 0 1.2 210 223178 095 0 o 1‘1lt:|'

‘maginary
Iomponent: jy Loluo 730 780 625 | 3,35 o0 l-z.ao -4,45 -4,75 -3,80 -1.00] 0 I 170 270 285 230 120 0 -1,03 -1,65 -1.73 -1.40 -0.74 Lu

15. Circular and Hyperbolie PFunctions of Complex Arguments.

The two diegrams (sine relief and tangent relief) provided

on the back of the Complex.Calculator are used for ascertaining
the circular and hyperbolic functions of complex arguments.

In tuis diagram the Gauss Plane of Numbers is subdivided by

a8 rectangular network, shown in red, so that the resl part

and the imaginary part of the argument can be read off at

any point. Superimposed on it is a netwcrk of orthogonal
curves, shown in black, enabling the function in accordance
with the vector value and the versor to be found.

The tangent relief diagram is accompanied by a detailed
system of formulae, to enable the hyperbolic functions to
be found from the circular functions.
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a. Sine of a Complex Number.

If the argument is given with the real and imaginary part,
i. e. in the form x_+ jy, then the value 8 and the versor
@’ of the functional value can be read off direct from the
sine relief.

sin z = s8in (x + jy) = ségf =8 . ej"
Example:
sin (0,9 + J 0,46) = 0,92/218 = 0,92/199°
sin (-0,38 - j 0,53) = 0,67/1448 = 0,67/129,5°
sin (-0,20 - j 0,90) = 0,94/-1188 = 0,94/106°
sin (0,8 - J 0,48) = 0,88/-268 = 0,88/24°
. For we have:
sin (6,08 - § 0,9) = ein(6,08-6,28.-5 0,9)
= 8in(~0,2 - § 0,9) = 0,94/-1188 = 0,94/-
8in ("6:66 + 3 0,53) = sin ('6!664'6’2& J 0,531 -
= sin (-0,38 + J0,53) = 0,67/1448=0,67/A0%
For we have:
sin (2,24 + J 0,46) = sin(3,14-(2,24430,46)) .

sin(0,9 - jO,46)= 0,92/..28 = 0,92/-190
sin (-3,14-(-2,34-30,48))

= sin(-0,8 - j0,48) = 0,88/1748 = 0,884%5

b. Sine Value Known ~- Argument Required.

sin (-2,34 - 3j0,48)

If the sine value is given, in the form a+fb , it is converted
& into the form r/p? - s@ s using the front side of the Complex

Calculator. With s and , the values x and ¥, including the

relevant sign, can be read off from the sine relief diagram.

Example:
arc sin 0,92/-218 = 0,92/-19° = 9,9 - j 046 or, alternatively,
in accordance with ¥ -(x+jy) = 2,24 + J 0,46 et

arc sin 0,88/1748 = 0,88/156,5° = -0,8 + j 0,48 or, alternatively,
in accordance with -§F-(x+jy) = -2,34 - j 0,48 X)

X) For solutions capable of diff:rent interpretations the

extended sine relief should be used, for the sake of grester
clarity.
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c. The Cosine of a Complex Rumber.

The cosine is converted into the sitne in accordsnce with
the following formulae:

coa(u+,‘]v)-coe(-u-JY)=BM(§+|ul'!.‘l"l)
cos (-u + jv) = cos ( u- jv) = sin (gf_ SR S
Example:

cos (0,67+3j0,46) = sin (1,57+0,67+30,46) = sin (2,24 + jO,46)
= 0,92/-218 = 0,92/-19°

= 0,4/1488 = 0,4(1::9

d. Cosine Value Known -- Argument Required. .
Proceed as under (b) and insert the resulting values x and y,
with their sign, in the following formula:

arc cos 8/d% = (g - x) - Jy

Example:

arc cos 0,4/1488; = arc cos 0,4(1}20 with = 1388 and & =
0.4 we obtain a value of -0.26 for x and 0.3 for y from the
sine reiief.

arc cos 0,4/1488 = (1,57 + 0,26) - J 0,3 = 1,83 - j 0,3

arc cos 0,67/-1448; (x = -0,38 and y = -0,53)

arc cos 0,67/1448 = arc cos 0,67/-129,5° = (1,57+0,38) + 3§ 0,53
31!95 + j 0!53 l .

e, The Hyperbolic Bine of a Complex Number.

The hyperbolic sine is transferred to the circular sine in
accordance with the following formulae:

Sin ( u+tjy) = | sin(| v

—lP'): Sin (—u—jv) = j sin(—{v| + | M)
Sin (—u+jv) = ] sin(| v uh =i lu

+ |} Sin ( v—jv) = | sin(—|v

Exanmnple:

on [0,8-10,22) = j sin (-0,22-30,8) = j 0,91/-1218 =
$€,91/109°: multiplication by j is equivalent to a rotation
througk an angle of -1008 (or - 90°)

‘em(0,8-j 0,22) = 0,91/-218 = (2,91/-19°

€in (0,35+36,49) = j sin(6,49-3(,35)y 5,49~ 28 = 6,49-6,28 = 0,21
i } 81n(0,21-§ 0,35) = 3 0,42/.628 = 30,42/=56
0,42/38g = 0.427/34°

]
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f. Hyperbolic Sine Known -- Arguvment Required.

According to whether ¢? lies in the 1lst, 2nd, 31d or 4th
quadrant, it is equated with (100-0)&, (100-6)& or (-100-68)
a8 the case may be, x and y being read off from the sine
relief diagram and the argument obtained according to the
following formulae:

Arins /(100—0)® = y4px: At Sin s [(—100—0)® = —y —ix
W Sins [(100+0)® = —y+ix: Ar Sin s [(—100+0)® = y —ix
Examples : i
Ar Sin 0.9 |—21%; 3 [(—100+0)® = 0.9 /799; xm0,22, ym0,8
ASin0N. /—21% = 08 — | 0,12 ey
Ar Sin 0,42 /387; 3 /(100—0)® = 0,42 /62%; x=0,22, y=0,35
W Sin 042 38° = 035 + | 012

® e ..

g. Hyperbolic Cosine of a Complex Number.

The hyperbolic cosine is transferred to the circular sine
in accordance with the following formulae:

€of ( v+I¥) = €of (—u—iv) = sin (3 + [v]| —} |u])
Cof (—u+Iv) = Cof ( v—fv) = sin (3 — |v| — | [v])
Example: :

Cof (—0,421) 0,45) = sin (1,57—0A5—j 0,42) msin(1,12 — | 0,42) = 1,0 /—12°
€of (—0,46—] 0,67) = sin (1,574+0,67—j 0,46) = sin(2.24 — | 0.46) = sin(x—(x+jy)) = sin(0,9 + | 0,46) = 0.92 2

h. Hyperbolic Cosine Known -- Argument Regquired.

Proceed as under (b), the resulting values x and y, with their
. sign, being inserted in the following formula:

Bégﬁ:y*l'j(%—X)

Exanple:
1,0/-10,80 = 1,0/-128; 4. Quadrent; x = 1,12, y = -0,42

1,0/-10.8° = 1,0/-128 = -0,42 + §(1,57 - 1,12) = -C,42 + § 0,45

or alternatively: x = 2,02; y=0,42 with & - x4+jy' and thus:
1,0/-=10,8° = 1,0/-128 = 0,42 4+ 3§(1,57 - 2,02) = C,42 - § 0,45
0,92/19° = 0,92/218; 1. Quadrant;x=0,9; y=0,46 or x = 2,24; y=-0,46
0,92/19° - 0,92/218 = 0,46 + 3 0,67 or = =0,46 - § 0,67

i. Tangent of a Complex Number:

If the argument is presented with the real and imaginary part,
i. e. in the form x-jy, then the vector value f and the
versor_t_: of the functional value can be read off direct froa
the tangent relief diagram.

tg z - @(' +j,) - ‘t/t' = t"jt’




A

Example:
tg (0,36+J0,6) = 0,64/74€ = 0,64/66,50
tg (-0,44-30,38) = 0,58/-147€ = 0,58/-1320
Por xg + k¥ : tg(x+jy) = tg(x ; k& + jy) = t/eé
tg(-9,69-j0,34 )= (-x+kf-jy)=(-9,69+38-0, 34j))=(-0,26-j0,34)=0,42/-1388

For +§§+x= +5:  tg(x-jy)= 1: tg(+g—(x+3y))— 1:(t/28) = 43
tg(1,22-30,86)=1:tg(1,57-1,22+30,86)=1:tg(0,35+30,86)=1: (o 76/858)=1,32/-
j. Tangent Value Known ~- Argument Required.

If the tangent value is given in the form ¢+jb, it is converted

into the form pfp*«¢/t! . With t andT, the values x and y
are ascertained from the tangent relief (including their sign).

Example: : ' _ .
arc tg 0,58/-132° = arc tg 0,58/-1478 = -0,44 - J0,38 and also
-g'-arc tg 1,72/1478 = -1,13-30,38 x)

arc tg 1,324-16,50 = arc tg 1,32/-858 = gi-arc tg 0,76/858 =

k. Cotangent of a Complex Number.
The cotangent is converted into the tangent in accordance with

the following formula:
- 1
ctg (u + jv) = l:tg(u + jv) = Eﬁ‘fg

Example:
ctg (0,5430,67) =1 3 tg(0,5-30,67) = 13(0,76/728) = 1,32/-T2€
= 1,32/-65°

ctg (-0,38-30,74) = 13tg(-0,38-30,74) = 1:(0,72/-1208) =
1,39/1208 = 1,39/1089

1. Cotangent Value Known -- Argument Required.
The equation arc ctg _/1: = arc tg -:-L-L' is employed.

Example:
arc ctg 2,08/129,5° = arc ctg 2,08/-144€ = arc tg /1448
= arc tg 0,48/1448 = . =0,34 - J 0,35

arc tg 0,76/76,5° arc ctg O ?6( 58 = arc tg 1,32/-85€

=1,22 - j 0,86

X) For solutions capable of different interpretations the
extended tangent relief should be used, for the sake of
greater clarity.




(-100+7)

~ 15 «

m. Hyperbolic Tangent of a Complex Number.

The hyperbolic tangent is converted into the circular
tangent in accordance with the following formulae:

Cgg(utiv) = itg(vl — v Tegl—u—v) = jto(— [v| + ] [u])
Tg (—u+iv) = j1g(v| + lu): To(uv—dv) = jtg(— |v|—1]]u]

Example:

2 (-0,64430,22)=] tg(+0,22+10,64)=j 0,60/848: multiplication
by j amounts to a rotation through an angle of +1008 (or 90°)
1;.‘(-0.644,10,22)-0.6(1818 = 0,6/165,5°

23 (-0,54-30,44)=] tg (-0,44 + ] 0,54)-30,66&1 3_30!66;-1663

n. Hyperbolic Tangent Known -- Argument Required.

According to whether ¢! lies in the 1st, 2nd, 3rd or 4th
quadrant it is equated to (100-£)&, (100+£)€, (-100-T)€ or
as the case may be, x and y being read off from the tangent
relief and the argument being found in accordance with the
following formulae:

e Tg 1 [(100—)® = y+ix;  Ae Tg t [(—100—)? = —y—ix
Ur Tg t /(100+7)° = —y+ixi  Ar gt [(—100+7)° = y—ix

Example:

Ar tanh 0,6/165,5%= Ar taph0,6/1845; s /100+ 1) 8= 0,6/848;
x=0,22; y = 0,64

Ar tanh 0,6/1848 = -0,64 - jO,22

Ar tanh 0,66/=149° =Ar. tanhO,66/-1668, 8/(-100-7T)& = 0,66/-66€;
x =0,445 y = 0,54

Ar tanh 0,66/-166€ = -0,54 - j0,44

o. Hyperbolic Cotangent of a Complex Number.
The Hyperbolic cotangent ls converted into the hyperbolic

teangent by means of the following formulas

coth (u+jv) =1 : tanh (u+jv) = _1__/_1-8

J —_—

Example.

coth (0,76-30,18) = 1 3tanh(0,76-30,18) =1 : jtg(-0,18-30,76)
=13 (30,66/-1108) = 1,52/1108) :

Divieion by j emounts to a rotation through an angle of -1008
(or -90°)
Ctg (0.76—40,19) = 1,52 /10°
Ctg (—0.18—40.76) = 1 : Tg (—0.18—40.76) = 1 : j1g(—0,76+)0,18)
=1 : (J0.9/178% = (1.06/—178F) : |
Ctg (—0.18—076) = 1,06 N22° ; - 16
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p. Hyperbolic Cotangent Known —- Argument Required.

The equation Ar Coth t/2€ = Ar Tanh %{-18

is employed.
Example:

Ar Coth 1,52/108 « Ar Tanh 4,66/-108; tq-lomgozsg
x=0,18; y = 0176 = 0,76 - j§ 0O,
Ar Coth 1,06/1228 = Ar Tanh 0,94 /-1228, té(-100-2223;
X =0,/6; y=0,18=-0,18-730,7
Note:
Pages 22 and 23 contain an extended relief diagram of the
sine function and tangent functionm respectively, to enable

errors to be avoided and to provide a view of the possible .
solutions in cases where there is more than one interpretation.

By examining these extended relief charts from different sides,
we obtain, according to the sero point selected, the following
functions: sin z, coe z, cosh 2, J 8inh 2 or tan z, j tanh Z,

J coth z, + ctg z.

The exact values, however, must be obtained from the relief
diagrams on the back of the Complex Calculator.

If users desire to insert or superimpose additionai single &
values or curves on the Complex Calculator, we recommend

the use of our special CRISTALLOGRAPH Pencil No. 2241 -

- obtainable from dealers, in 5 colours.

— —_— - = -
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The contents of this booklet, including illustrations and
examples, are our copyright. Reproduction in whole or 1in
part is not permitted. Yade in Germany
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