Texas Instruments
programmable

slide -rule calculator
SR-52

Texas Instruments
progrommable calculotor

MANUAL)

IMPORTANT
Record the serial number from the bottom of the
calculator and purchase date in the space below. The
serial number is identified by the words "SERIAL NO."
on the bottom case. Always reference this information
in any correspondence.

SR-52
ModelNo. Serial No. Purchase Date

Toll-Free Telephone Assistance

For assistance with your SR-52 calculator, call one
of the following toll-free numbers:
800-527-4980 (within all contiguous United
States except Texas)
800-492-4298 (within Texas)

See Appendix A and back cover for further
information on service.

Copyright @ 1975. Texas Instruments Incorporated

TABLE OF CONTENTS

Section FPage
I INTRODHERIONS £ LGV s i 0 o i, 1
FEaltires” S bapn d i s el C il bt 2
Modes ol Operalion ¢ -5 nsa i = el |
Manual:Calgulations. i w5 5 4 e
Executing BEroramss el vlaeant & @ sl 8
Creating Your Own Programs. 12
Bty Eoalil s e i) i S

il e e e b S S ez

. ENTERING AND DISPLAYING NUMBERS . . 18
Entering MumBars: . . < . . o b e 8
ERtetifgom e TN S T 19
ScientiiioNolatom " i T s L 20
Advanced Effects and Uses of the [EE] Key 21
Clearing Incorrect Number Entries 23
Clearing a Calculation s gd
DisplavSorEaliEnyss s i s o & 24
Ercof-Conditions: o0 @il sl o v o 28

. ARITHMETIC CALCULATIONS 29
BasicEperatichs RN IR e e o 29
Chained Qperations 29

A Special Type of Operatlcm Ghalgil, = 30
Rarenthasan i IRER e SRR D L s, 31

TheUseof (=] inComplicated Expressions 34

IN.. SPECIALRUNGCTIONS gt =l - . . 3B
Functions of a Single Variable 35
Functions of Two Variables. 39
Angular Unit Conversions 41
Coordinate (Polar/Rectangular)

Convarsitneltm U SR nBlo i, o s 44

V. ALGEBRAIC NOTATION: MORE ABOUT

PENDINGOPERATIONS 46
The Algebraic Hierarchy 46
Keeping Track of Display Register Contents 49
VL MEMOBY REGISTERSEL S ol bt o 51
Storing Quantities in Memory. 51

Recalling Quantities from Memory 53

TABLE OF CONTENTS (continued)

Section Page

Vi, Clearing the DataMemory 55

(cont'd) Direct Register Arithmetic 55

Memory/Display Exchange. 57
Supplying Missing Operands with

Memory Functions: . . "0 L L o 58

VIl. RUNNING PRERECORDED PROGRAMS . . 60

Reading a MagneticCard 60

ExecutingaProgram 64

VIll. GENERAL PROGRAMMING INSTRUCTIONS. 65

Elements of Program Execution . . . 66

Mechanics of Programming 69

Development of Programming Style. . . . 71

IX. ELEMENTARY PROGRAMMING T

UsitigiEahals s, 8 R 72

UsingRunandHalty \Woernar. - =« » 7

Entering YOURProgram. ., .- . . .0 S o 76

Recording a MagneticCard 77

Editing Programsi sl e | e 78

Displaying the Program 78

Replacing an Instruction with Another. . 81

Deleting an Instruction. 81

Inserting an Instruction o e

Single-Step and Backstep 82

Practice Problems. . o R St 84

X. TRANSFERINSTRUCTIONS . & e 88

Unconditional Transfer Instructions. . . . 88
Conditional Transfers

(Branching Instructions) - 89

Setting and Resetting Program Flags . . . 95

Decrement and Skip on Zero (DSZ) 98

XL «SUBROUTINES. .. .t o s e 101

Calling a Subroutine. + - - 101

Labeling a Subroutine - ¢ 106

Avoid Using [=] in Subroutines . . . - . 106

The Return Instruction. « « - 107

Subroutine Practice Problems - 110

TABLE OF CONTENTS (continued)

Section Page

Xll. INDIRECTINSTRUCTIONS
Indirect Data-Register Instructions
Indirect Program-Transfer Instructions . .

X PRINTERCONTROL . L e s
Listinga Program = 58 s s e
Rrinting Datal =@l S0dg s il st as e e
Paper Advancement.
Programming Implications.
Mrace Operations i e doralon ek
Running Long Programs.

XIV. ACOMPLETE SAMPLE PROGRAM
Detinethe Probleml. < .o b e bl
Develop a Flow Diagram
Convert Flow Diagram to Keystrokes .
Entarthe Program.. o i g e s
Check and Edit Program T
Document User Instructions
Runningthe Programy S SSt Netie Bl o uile
Optimizinga Program 0. . . .

XV. AN ADVANCED SAMPLE PROGRAM OF
MATHEMATICAL MODELING.

AP e v i e o o e

Battery and AC Adapter/Charger Operatlon
Battery Pack Replacement.
Caring for MagneticCards

MandingEards .0 L o Lnl e

Clegning Gards R s SR

W NG O R SR
Using the Head-CleaningCard
in:ase of EnificUItyisRess SuRt e Mhiene: L
If You Have Questions or Need Assistance .

115

155

. 173
. 173

174
175
175
176
177
177
178

. 180

I. INTRODUCTION

You have just purchased a highly advanced pocket
calculator. That much you probably already know. What
you may not fully appreciate is just how much the SR-52
is going to increase your ability, speed, and pleasure in
problem solving. Beyond a mere calculator, the SR-52 is
a true problem-solving machine. The problem-solving
capability comes from the unique combination of three
elements: portability, programmability, and programming
method. These elements allow you to always have at hand
the means necessary for solving those complex problems
you regularly encounter. The SR-52, through portability,
provides ready access to the problem-solving machinery
—the programs. Conveniently stored on magnetic cards,
they free you from the need to remember equations,
constants, numerical algorithms, and generally from the
lengthy mechanical process of obtaining an answer to

a well formulated problem. The method of programming
allows you, with or without prior programming
experience, to solve involved problems easily, creating
your own programs in a manner equivalent to the
mathematical sequence you use in stating the problem.

Regardless of your previous programming experience,
you are in for a pleasant surprise. Even if you have no
prior programming experience, you will find the simple
method of programming the SR-52 is not only easy but
fun. If you are an experienced user of computers, you can
enjoy many features previously unavailable except on
full-scale computers.

The four-function electronic calculators have already
revolutionized the way people perform arithmetic; the
programmable hand calculator will have at least that large
an impact on the way professional people solve problems.
Remember the SR-52 is a problem-solving machine. As
your familiarity with this calculator increases, its
usefulness to you will also increase. Perhaps these
remarks will communicate what we at Texas Instruments
believe to be the significance of the SR-52 to you—and
our pride in offering it.

FEATURES

The following features are indications of the versatility
and performance of your SR-52,

224 Program Storage Locations —Simply place your
calculator in the learn mode and it will remember up to
224 calculation steps and numbers which can be repeated
on your command.

72 Labels — These labels permit quick identification or
transfer to any program segment.

23 Preprogrammed Key Functions — Trigonometric and
logarithmic functions, powers and roots, factorials,
reciprocals, conversions, and pi are available directly
from the keyboard.

20 Addressable Memory Registers — Store and recall
data or perform direct register arithmetic: Addition,
subtraction, multiplication or division with any memory
register without affecting the calculation in progress.

12-Digit Precision — All registers, internal and
addressable, provide 12-digit numbers with power-of-ten
exponent.

10-Digit Display — Format controllable 10-digit display
with a scientific notation range from 10-%? to 10°?. The
12-digit display register contents are rounded to ten digits
for display.

10 User-Definable Keys — These allow user-definable
functions to be executed simply by pressing the
appropriate label key.

10 Internal Processing Registers — These are used to
hold operands for calculations in progress.

10 Logical Decision Functions — Program your calculator
to make repetitive decisions and branch to appropriate
program segments automatically without interruption.

5 Program Flags — These flags may be set, reset, and
tested under program control.

3 Program Levels —Two levels of subroutines may be
defined, which when called by the main program or
another subroutine will execute and then automatically
return control to the calling routine.

True Algebraic Entry — Automatic processing of
parentheses and conformity to the rules of algebraic
heirarchy allow problems containing up to 10 pending
operations to be programmed and entered in the same
way they are normally written.

Permanent Program Storage on Magnetic Cards —A
built-in magnetic card unit stores up to 224 program steps
on a single card.

Optional Printing Unit— Enhance the versatility of your
calculator with the desk printing unit to obtain a
permanent record of your calculations or programs.
Contact your dealer for more information.

To illustrate the power of the SR-52's algebraic system
imagine that your program requires the evaluation of a
complicated expression such as:

X5
(\"Xa]
Xz + X3 /
y=X1
To make things worse, imagine that all the quantities
X1, X2, X3, X4, Xs are defined to be expressions of the
same complexity as y. The ten-level internal processing
registers allow the SR-52 to evaluate all the quantities x:
through xs and obtain y without storing any intermediate
results in the user’s addressable memory. (It can in fact
do this and still have two levels to spare!)

MODES OF OPERATION

The SR-52 may be operated in three different modes
calculate, run, and learn.

When you turn your calculator on it is in the calculate
mode. You will find that once you have mastered the use
of the calculate mode you are well on your way to
mastering the learn mode as well.

Calculate Mode — Here you manually operate the SR-52
as a general-purpose calculator. You command each and
every step by keystrokes: entering numbers, performing
mathematical operations, computing functions, and
storing or recalling intermediate results or other data.

Run Mode — You can use a program designed by yourself
or by someone else to solve a problem. Reading a small
magnetic card (such as supplied in the Basic Library) into
the SR-52 program memory enables you to tailor the
calculator to perform the sequential steps necessary to
solve a special problem automatically. You enter the data,
start the calculation then typically wait just a few seconds
for the answer to appear on the display. Not only does the
RUN mode save you the labor of remembering and
executing keystrokes; it makes problems solvable that
previously required a full-scale computer.

Learn Mode — After defining the steps you would use in
the calculate mode to solve a problem, you can key these
steps directly into the SR-52 program memory for
immediate use in the run mode. It is also possible to step
through program memory and to display the instructions
for editing purposes. This feature will soon encourage
you to use the learn and run modes to solve even short
problems which you might at first solve manually. Once
you know there are no mistakes in a program, you have
nearly eliminated the opportunity to make mistakes in

working the problem through miskeyed or misordered
operations, To avoid the necessity for manually keying in
your program each time it is needed, it can be recorded
on a magnetic card for future use.

The SR-52 has been designed to be compatible with an
optional printing unit. This option allows the user to
permanently record calculator activities by performing
several printing functions either in the calculate or run
mode. In the calculate mode, the printer may be used to
print any desired intermediate results or to provide a
complete listing of the stored program. In the run mode,
print statements encountered in the program cause
automatic printing of the quantity just computed. Paper
advance statements can be used to set off groups of data.
These printing features allow you to run a program
without the necessity of program halts which would be
required to record multiple answers. Of particular
importance in checking a program, the trace option prints
all actual steps performed and the corresponding
numerical results.

MANUAL CALCULATIONS

By now you are probably eager to use your calculator.
When you slide the ON/OFF switch to the right and press
[CLR] , a single zero should appear in the display. If
anything other than a single zero appears, the battery
pack is probably discharged. Refer to Maintenance and
Servicing Information in this manual.

The following examples will familiarize you with the basic
operation of your calculator. It is a safe practice to press
[cLR] prior to beginning any new problem to be sure all
incomplete calculations are eliminated. However, when a
problem is ended with [=], a new problem may be
entered without using [CLR].

Example: 37.84 + 122.09 — 10.369 = ?

Enter Press Display
37.84 [+] 37.84
122.09 =1 159.93
10.369 =] 149.561

Notice that the numbers and operations are entered in the
same order as they occur in the mathematical expression.

Example: 16 x 3.1689 + 0.0018 = ?

Enter Press Display
16 X] 16.
3.1689 [Z=] 50.7024
.0018 =] 28168.

Now try a slightly more complicated problem involving
parentheses. Parentheses ensure correct execution of
the operations used thus allowing you to enter problems

in the order they are written.
Example: (9.1 + 11) = 0.16 = ?

Enter Press Display Remarks
e [T] 0.
o1 [+ 9.1
3] 20.1 Evaluates contents
== 20.1 of parentheses
16 [=] 125.625

To compute various mathematical functions of the
displayed quantity, simply press the corresponding
function key.

Example: In (2.718) = ?

Enter Press Display
2.718 [Inz 19998963157

To compute a trigonometric function it is first necessary
to select whether you plan to measure angles in degrees
or radians. This selection is made with the angular mode
switch just under the display on the left side. Slide this
switch to the right for degrees.

Example: Sin 30° = ?

Angle:Deg
Enter Press Display
30 [sin 0.5

Note that this operation was basically the same as in the
previous problem except for the additional step of
selecting the angular mode.

You have probably noticed that most of the keys on the
SR-52 are doubly labeled: a label on the key itself and one
just above it. This implies that these keys have two
functions. The first function or meaning of the key is
denoted by the label on the key. When the key is
immediately preceded by pressing the [2nd] key, then the
second function of that key is utilized. In this way the 45
keys of the SR-52 are able to represent 88 different
functions. (Note: only the [INv] key and the key itself
have single meanings: the digits [1] through (9]
actually have double functions, though not labeled.)
Throughout this manual the [2nd] key is indicated or
shown as a necessary prefix to all second functions. For
example, the square root function will be shown [2nd]

, reminding the user that to access [f@. it must be
preceded by [2nd]. (If you press [2nd] by mistake, you may
nullify its effect by pressing it again).

Example: (8 x (67.8 + 11))/\/3.0963 = ?

Enter Press Display Remarks
[cw] (] 0

8 <] [] 8.

67.8 [+] 67.8

11 RS 630.4 Completes numerator

calculations

3.0963 [2nd] 1.759630643 Square root of 3.0963

=] 358.2570027

The previous examples are only a sample of the
mathematical capabilities of your SR-52 in the calculate
mode. A complete and sequential description of all
calculator functions follows this introduction.

EXECUTING PROGRAMS

Now we come to the most interesting and useful aspect of
the SR-52 —its ability to execute a program in the run
mode. This is, after all, what the SR-52 is all about—
executing programs to solve problems. To demonstrate
this mode we have selected Compound Interest (BA1-08)
from the Basic Library. Each program in the basic set has
its own detailed instructions for use as well as a complete
listing of the programming code. The present discussion
will therefore be somewhat redundant with that provided
in the documentation of the Basic Library.

Example: Compound Interest Computations

Given any three of the four variables as inputs, solve for
the remaining variable in the compound interest equation
FV = PV (1 + i/100)", where

PV = Present Value

FV = Future Value

i = Interest rate (percent) per compounding period

n = Number of Compounding Periods

To solve this problem, select the magnetic card for
program BA1-08. Enter the program into the calculator's
program memory: Press [CLR] [2nd] I and insert the
magnetic card into the lower slot on the right side of the
calculator so that Side A is read (Insert card: ®A=). Do
not restrict or hold the card after it is engaged by the
drive motor. Remove the card from the calculator and
insertitin the upper slot so that the card annotations are
visible. After the program has been read into the SR-52
program memory, you are ready to solve some interest
problems. The instructions for using this program are:

Step Procedure Press Display
1 Initialize [E] 0.00
2 Input 3 of 4 arguments
(in any order):
Present value PV [A] PV
Future value FV (8] FVv
Interest rate (%) i [c] i
Number of Periods n o] n
3 Compute unknown value:
Present Value PV [2nd] IH PV’
Future Value FV [B | Fv’
Interest rate (%) i EZEIN ¢
Number of periods n [2d] MM n’
4 To solve a new problem go to

Step 2. You need to enter
only those quantities that
have changed.

Observe that the key functions printed on the card make
reference to the above instructions unnecessary after
they are understood the first time. You may be wondering:
How do | go from the calculate to the run mode? The
answer to this is that everytime you press one of the

the SR-52 changes from the calculate to the run mode
and begins executing the instructions so labeled in the
program memory. When it has completed execution, the
SR-52 returns to the calculate mode.

Example: What is the value of $500 after 24 months with
interest compounded monthly if the annual interest rate
is5.75%7?

Enter Press Display Remarks
[E] 0.00 Initialize

500 [a] 500.00 PV

5.75 5.75

12 =] 48" Monthly rate i
(<] 48 i

24 (o] 24.00 n

[2nd] WA 560.78 FV

*This program displays all results rounded to two decimal
places.

Example: How much need be invested at an annual rate
of 6.5% compounded semi-annually in order to be worth
$100,000in 15 years?

Enter Press Display Remarks
100000 (2] 100000.00 FV
6.5 [=] 6.5
2 =1[<] 3.25 i
30 [o] 30.00 n
[2nd] 38308.77 PV

10

Example: How much will that same investment from the
last example be worth in 10 years?

Enter Press Display Remarks
20 (D] 20.00 n
[2nd) I 72627.22 FV

Example: Whatis the annual interest rate of a $500
investment that has a $575 value after two years with the
interest compounded quarterly?

Enter Press Display Remarks
500 [a] 500.00 PV
575 (8] 575.00 FV
8 (o] 8.00 n
fznd] M [X] 1.76 i (Per quarter)
4 =] 7.05 Annual rate

To solve these examples, it was not necessary for you to
perform all the detailed keystrokes necessary to set up
and execute the problems in the calculate mode —you
don't even have to know the equations involved. Now we
will give you a quick introduction to programming the
SR-52 after which you should be fairly well acquainted
with the calculator and ready to start learning the details.

1

CREATING YOUR OWN PROGRAMS

The learn mode allows you to create your own programs
and enter them directly into the program memory of the
SR-52. The basic operating instructions to accomplish
this are simple: Enter the learn mode by pressing (LRN] and
define the program by keying in the proper sequence of
instructions. Then, when your program is complete in
program memory, transfer out of the learn mode by again
pressing [LRN] . Your program now resides in program
memory and if so desired may be recorded on a magnetic
card. Of course, this is not the whole story. There is a
certain amount of activity which is necessary prior to your
keying in the program. This is the phase where you
determine your objectives, assemble the equations you
will need, and finally write down the actual program steps.

Example: In a compound-interest problem, what is the
future value given the other three variables as input

quantities? There is no single solution to this problem,
but we will discuss two different ways it might be done.

METHOD 1

The easiest way to write a program to solve for FV is just
to copy the keystrokes which would be used in the
calculate mode, except that where you would enter data,
a halt instruction [HT] would be used to allow entry of
data from the keyboard at that point. Execution would
then be resumed by pressing [RUN . From the equation for
future value, FV = PV x (1 + (i/100))", the key sequence
in the calculate mode would be as follows:

Enter Press
Present Value (PV) (X1 [C]

1 L]
Interest Rate (i) El
100 0OJ e
Number of Periods (n) =]

12

Verify that the above key sequence will correctly solve
for the future value (FV) with PV = $500, i = 5.75%
annually, and n = 24 months. The result is 560.787147.
Be careful to enter the value .4792 for i, rather than
attempting to interject the calculation 5.75 + 12 =

in the middle of the above keystroke sequence. Thisis a
shortcoming of the type of program we are currently
designing: During halts the calculator should only be
used to enter the appropriate data in this type program,
unlike the more usable program, BA1-08 where you were
able to interject "'5.75 +~ 12 =" before pressing [C] . A
program which is a literal automation of the foregoing
calculate-mode keystrokes would be the following:

Key Sequence Remarks
[2nd] (Giving the SR-52 a place to go when
[zB%] you press [B | to solve the problem)
]

E:

HHEH

HLUI

=

(to allow entry of i)

0

(to allow entry of n)

EMENHEEEBEH

(to display the answer)

13

Note how we have labeled this program at the beginning
so the SR-52 will find its destination when [B] is pressed.

Now you may load this program into the SR-52 program
memory. First, turn your calculator off then on again to
clear the program already in the program memory. Now
press the [LRN] key and you should see displayed 000 00;
your calculator is now in the learn mode. Carefully key in
the steps listed above. If you make a mistake, turn the
calculator off and on and start over again. (Later you will
learn how to correct mistakes without starting over.) At
the conclusion of keying in the program steps you should
see 018 00 displayed, designating that the next instruction
would go into location 018, currently empty. To run the
program, go from the learn mode to the calculate mode by
pressing [LrRN] . The instructions for using this program
are as follows:

Step Enter Press Remarks

1 PV [B8] Begins program execution
2 i [RUN] Resumes execution

3 n [RUN] Concludes execution

Try the case already worked out, with PV = 500, i = .4792,
and n = 24, and the answer is 560.787147.

Obviously, this program is not as easy to use as BA1-08.
For one thing, the data had to be entered in a definite
order and the calculator could not be used for intermediate
calculations during program halts. The next method will
demonstrate improved programming techniques to solve
the interest problem.

14

METHOD 2

In this method we will design the program much more
along the lines of BA1-08. We use the labels [A], [C],
and [D | to store the present value, interest rate, and
number of compounding periods into selected memory
registers. After the data are entered, the calculation of
Future Value (FV) at label [8] will recall those data from
memory as needed. We have to decide which memory
registers to use for PV, i, and n. For simplicity, select
register 01 for PV, register 02 for i, and register 03 for n;
although this is as arbitrary as our labeling scheme. The
segments of code necessary to store the data in memory
are the following:

Key Sequence Remarks

2nd] NN)

Stores PV into register 01.

m)

BEE BEEEEH

5 Stores i into register 02.

2]
[HLT))
[2nd] b
(o]

2

|

Stores n into register 03,

<8

3]
HLT| !

15

We still need to define the program segment to calculate
FV from the quantities in the memory registers. This is
achieved like the program of Method 1, except for the
memory references:

Key Sequence

(8] o]
[red [o]
o] (o]
0d BN
x] 07
aJ [Rci]
EE (o]
[(2]
[Red] =l
[o] [HiT]
2]

To use the Method 2 program, first clear program memory
by turning the calculator off then on again. Go to the

learn mode by pressing [LRN] . Now key in all instructions
beginning with [2nd] [a] and concluding with in
the program segment labeled [8] . If you performed
these steps properly, you will see the displayed number
043 00, indicating that the next program location is 043.

Now press [LRN] to return to the calculate mode, and test
your program using the following procedure:

Step Procedure Press Display
1 Enter PV, i, and n in any
sequence:
Present value PV [a] PV
interest rate (%) i] i
number of periods n [D] n
2 Calculate future value [B] FV

Note that you can now calculate "5.75 + 12 =" prior
to pressing [C] .

This introduction to your SR-52 should allow you to begin
solving a few problems. You will find that optimizing the
use of your programmable calculator is a rewarding
experience. The following sections are designed to help
you develop your problem solving ability.

1474

Il. ENTERING AND
DISPLAYING NUMBERS

Now we will return to basics and begin a more thorough
description of SR-52 operation. Remember that generally
any description which pertains to calculate-mode
keystrokes also applies when those keystrokes are made
in the learn mode and processed in the run mode.

ENTERING NUMBERS

Any number up to ten digits may be keyed in by using the
keys [0] through [9] and the decimal key [+] . The
procedure for entering a positive number is simply to
press the keys in sequence exactly as the number appears.

Example: Enter 671.8409236
Enter Press Display
[CLR] 0
671.8409236 671.8409236

The decimal point entry is not needed to enter an integer.
The calculator automatically supplies the decimal when
any function key is pressed.

Example: Enter 1019

Enter Press Display
[CLR] 0
1019 [+] 1019.

Decimal point entry is required for numbers less than
one, a leading zero is automatically displayed for clarity.

Example: Enter0.04077

Enter Press Display
Ul 0
04077 0.04077

18

Negative numbers are entered just like positive numbers
except that the change-sign key [+/-] is pressed as the
final step of number entry.

Example: Enter —1019.04077

Enter Press Display
[CLR] 0
1019.04077 [+~ —1019.04077

The change-sign key may be used to change the sign of
the displayed quantity at any time.

As you enter a number in the calculate mode, that number
will be shown in the display, including the decimal point
and sign. If you make a mistake, simply press the [CE]| key
and begin again. If more than ten digits are attempted in
number entry, all after the tenth will be ignored.

ENTERING =

As a convenience the SR-52 provides a means of entering
w by pressing a single key. Use of this key to enter 7 turns
out to be more than just a convenience. A 12-digit
representation of & results from this operation. (You are
restricted to only 10 digits when the manual number entry
method is used.) The display always rounds to ten or
fewer digits, so the extra two digits are not visible, but
they are carried in all subsequent calculations.

Example: Enter pi (@)

Enter Press Display
[2nd] 3.141592654

The value of pi actually used by the calculator is
3.14159265359 even though the display only shows the
value rounded to ten significant digits.

19

The twelve digit internal representation of 7 using the
[2nd] IE@ method of entry exceeds the exact value of 7 by
less than 2.07 x 10 °, or less than 6.59 x 10 * percent.
This represents an error equivalent to about one inch in
computing the equatorial circumference of a sphere the
size of the earth from its radius, a precision adequate

for most purposes.

SCIENTIFIC NOTATION

To enter very large or very small numbers you may use
scientific notation where the number is expressed as the
product of a number and a power of ten (either positive
or negative). This first factor is usually referred to as the
mantissa, and the second factor, the power-of-ten, is
called the exponent. The full procedure, therefore, is to
key in the mantissa (including its sign) then press the
enter-exponent [€€] key, and finally key in the power

of ten.

Example: Enter6.025 x 10%°

Enter Press Display
[cir] 0

6.025 [EE] 6.025 00

23 6.025 23

Regardless of how the number is entered, the calculator
will normalize the number, displaying a single-digit to
the left of the decimal when any function key is pressed.

Example: Enter 6025 x 102°

Enter Press Display
[CtR] 0

6025 [EE] 6025 00

20 6025 20
=] 6.025 23

The change-sign key can again be used to assign a
negative sign to the mantissa and to the power-of-ten
exponent.

Example: Enter —4.818 x 10°'°

Enter Press Display
[CR] 0

4.818 +/-| [EE] -4.818 00

10 [+ —4.818-10

If you wish to change the sign of the mantissa after the
exponent has been entered, just press [+] [+/=] . If the
numerical value of the mantissa needs to be changed,
reenter the complete number after pressing [CE] or [CLR] .

Example: Change the number displayed in the last
example to 4.818 x 10 ¢

Enter Press Display

= A 4.818-10

The exponent size is limited to numbers no longer than
two digits. This provides a range of powers-of-ten from
10%7to 10°?. Note, however, that the SR-52 will experience
underflow whenever calculations result in numbers less
than 1. x 10 %% and overflow whenever encountering
calculations greater than 9.999999999 x 10%7 in
magnitude. A flashing display results from these situations.

ADVANCED EFFECTS AND
USES OF THE [ee] KEY

Pressing the [EE] key as in using scientific notation
causes several things to take place:

1. The display mode is set to scientific notation.

21

2. The two-digit registers for holding the exponent are
initialized to zero unless the number in the display
register already has an assigned exponent, which will
not be initialized.

3. Number key entries immediately following the [EE]
along with the pre-existing value of the exponent (if
any) are interpreted so that the last two digits entered
form the exponent. The earlier-entered digits are
discarded.

4. The rounded value of the mantissa actually shown in
the display is loaded into the display register for
subsequent calculations. This is sometimes a useful
feature.

The first effect is obvious. The second and third effects
are illustrated in the following example.

Example: Solve the problem (2 x 10%) x (2 x 10%) and
change the exponent of the result to 12.

Enter Press Display
[cR] 0

2 [EE] 2 00

3 x] 2. 03

2 [EE] 2 00

6 = 4, 09
[€€] 4. 09

1 4. 91

2 4. 12

Observe that the first two times [EE] was pressed following

a number entry, the exponent digits were initialized to 00.
When [E€] is used following a result, the exponent digits
are unchanged and only the last two numbers entered
are used as exponent digits.

22

We will use the pi key to illustrate the fourth effect of
the [EE] key.

Example: = — % # 0
Enter Press Display
[CLR] 0

[2nd] KB (=] 3.141592654
[2nd] I [EE] 3.141592654 00
=] -4.1-10

As previously indicated, when [2nd] @l is used, the
calculator internally uses 3.14159265359 though it only
displays 3.141592654. Pressing [2nd] [l [EE] , however,
causes the calculator to use only the displayed number —
discarding all digits not displayed. The calculation which
took place was actually 3.14159265359 — 3.141592654
which equals —0.00000000041 or — 4.1 x 10 '°. Note that
this last effect of the [EE] key affects only the number
displayed at the time [EE] is pressed.

CLEARING INCORRECT NUMBER ENTRIES

To clear an incorrect number entry from the keyboard,
simply press the clear-entry key [ce| and enter the proper
number. This key clears only entries from the keyboard,
not results of calculations or 7. There are other types of
clearing operations for the SR-52 and other keys for
accomplishing them. These will be discussed where
appropriate.

23

CLEARING A CALCULATION

One of these additional clearing operations is the clear
key [CLR| . Pressing this key clears the display and clears
all calculations in progress to insure your new problem is
not affected by operations not completed from a previous
problem. The clear key does not affect the contents of
the memory registers or program memory.

DISPLAY CONTROL

The SR-52 display gives you a controllable-format
representation of the number in the display register. The
display register like all other registers in the SR-52 is 12
digits long. For display this number is rounded to 10 or
fewer digits.

When your calculator is first turned on it is in the initial
display mode. In this mode all numbers are displayed
without the power-of-ten present in scientific notation.

Enter Press Display

8 (=] 8.
2 =] 4.
1 =] 1.
3 =il .3333333333
100 =l 100.
3 =] 33.33333333
1 =l 15
8 =] 0.125

The number of digits displayed following the decima!
point is as many as required within the maximum limit of
ten total digits to represent the number.

24

Whenever you enter a number in scientific notation or
when a number resulting from a calculation is less than
.0000000001 or greater than 9999999999 in magnitude,
the display automatically converts to scientific notation.
The exponent is shown by two digits set off to the right of
the others on the display. If the exponent is negative, a
negative sign appears just to the left of these two digits
and a ten digit mantissa is still available. The mantissa
shown in the display is always in the range 1 = |[M| = 10.
A mantissa greater than this can be keyed in, but as soon
as any operation, function, or storage key is pressed,

the mantissa is converted to the above range.

Displaying the mantissa with as many digits as required
up to the maximum of ten is known as the initial
mantissa format.

Example: {(13.5 x 107) x 9= 7?

Enter Press Display
13.5 [EE] 13.5 00
7 13.5 07
1.35 08
9 = 1.215 09

The display has switched from the initial display mode to
scientific notation, but the initial mantissa format has
been preserved.

If you don't want to see all the digits which may be present
in the initial mantissa format, you may cause all displayed
results to be rounded to a fixed number of places
following the decimal point by pressing [2nd| [l and then
enter the desired number of digits 0 through 8. The
contents of the display register will be shown with the
mantissa rounded to the desired number of digits, but alf
calculations will use the full unrounded value.

25

Example: 2 + 3 = ? Round to two decimal places.

Enter Press Display

2 = 2.

3 =] 6666666667
[2nd] 2 0.67

The result is shown rounded to hundredths. Similarly,
turn the calculator off then on to restore the initial display
mode and work the following example in scientific
notation.

Example: (2 x 10°) + 3 = ? Round to four decimal places.

Enter Press Display

2 [EE] 2. 00

9 2. 09

3 (=] 6.666666667 08
[2nd] 4 6.6667 08

To return the display to the initial mantissa format without
turning the calculator off, two methods are available.
Pressing [2nd] Il 9 or [INV] [2nd] I[N will restore the display
to the initial mantissa format without affecting scientific
notation.

To convert the display from scientific notation simply

use the key sequence [INV] [€E] . This does not affect the
number of digits carried unless the number cannot

be represented in the prevailing mantissa format with ten
digits. When this occurs the initial mantissa format is
used and when necessary the display remains in scientific
notation.

26

Example: 1+ (2x10%) =7

Enter Press Display

1 =] ik

2 [€€] 2. 00

3 = 5.-04
[2na] 2 5.00-04
[EE] 0.00

2nd] M 3 0.001
(2nd| HTH 4 0.0005
[2nd] L 0.00050

To convert to scientific notation there are two approaches.
The firstis to press [X] [1] [EE] (=], which multiplies
the number in the display register by 1 x 10° and converts
the display to scientific notation. The second method is to
method. It has the consequence of loading the display
register with the rounded quantity being displayed.

Caution! In no case should you use either of these two
display commands, which use [=] , in the middle of a
computation with pending operations. The reason is that
the [=] completes all pending operations. Pending
operations and the effect of [=] is discussed later in
this manual. To avoid this hazard, use these conversion
methods only after computations are complete, or else
properly interject the multiply by 1. x 10° without the
[=] keystroke.

27

ERROR CONDITIONS

Various error conditions during computation (either in
the calculate or run modes) result in a flashing display.
The quantity flashed in the display is a clue to the type of
error involved, We will deal with each error condition in
its appropriate place, listing only the two most common
errors here. Refer to Appendix B for a complete summary
of error conditions.

Overflow — Signifies a result whose magnitude is larger
than the maximum which can be handled by the SR-52
(9.999999999 x 10%?) and results in a flashing
9.999999999 99 display. This condition also is obtained
from attempted division by zero.

Underflow —Indicates a result which is different from
zero but whose magnitude is too small to be handled by
the SR-52 (1. x 10 %%). This condition results in a flashing
1.—99 display.

In the case of a flashing display resulting from any error,
pressing [cE] will stop the flashing without affecting the
displayed number.

28

I1l. ARITHMETIC CALCULATIONS
BASIC OPERATIONS

To perform simple addition, subtraction, multiplication
or division, the procedure is to key in the problem just
as itis written.

Enter first number

Press [+],[=].[X]. or (=]

Enter second number

Press [=].

Pressing [CLR] at the beginning of this sequence clears
any calculations in progress.

Example: (1.6 x 10°'?) x (6.025 x 1023) = ?

Enter Press Display

1.6 [EE] 1.6 00

19 1.6-19

6.025 (EE] 6.025 00

23 =] 9.64 04
CHAINED OPERATIONS

After aresult is obtained in one calculation it may be
directly used as the first number in a second calculation.
Thereis no need to reenter the number from the keyboard.

29

Example: 1.84 + 0.39 = ?then (1.84 + 0.39)/365 = ?

Enter Press Display Remarks

1.84 [+] 1.84

.39 =] 2.23 1.84 + 0.39
(=] 2.23

365 =] 0.006109589 2,23 + 365

In this way an indefinite number of operations may be
chained together, entering each operand only once.

A SPECIAL TYPE OF OPERATION CHAIN

In the foregoing discussion chaining or using the result
of one calculation as the first number of the next
calculation, involved pressing [=] for each calculation,
thereby obtaining the whole chain of intermediate results
as well as the final answer. Of course you would prefer
not to have to press [=] except at the end. There are two
types of chains which allow you to do this. These are:

1) Chains containing only + and — operations.
2) Chains containing only x and + operations.

In order to evaluate expressions of this type simply key
in the numbers and operation keys the way the problem is
written and finally press [=] to get the answer.

Example: 64 + 139 -22 -11 —-68= "7

Enter Press Display Remarks

64 [+] 64.

139 = 203. 64 + 139

22 [+] 181. 64 + 139 — 22

1 =] 192. 64 +139-22 + 11
68 (=] 124.

Example: 2.3 X340 x 24 +16 x 10=7

Enter Press Display Remarks

2.3 [X] 2.3

340 B4 782. 2.3 x 340

24 [+] 18768. 782 x 24

16 [x] 1173. 18768 + 16

10 =1 11730.
PARENTHESES

To introduce this subject you should try the following
experiment: Press [ciR] (] [5] [7]1[],andyou
will see the displayed value 35. The SR-52 has evaluated

5 % 7 and replaced it with 35. even though the [=] was not
pressed. This behavior is a consequence of the following
operating characteristic designed into the SR-52.
Whenever an expression is set off by parentheses, that is,
([expression]), the SR-52 will evaluate that expression
then use its value in any larger expressions of which it is

a part. This evaluation will be properly carried out even

if the expression set off by parentheses itself contains
othersmaller expressions which are set off by parentheses.
It may also contain functions as well as the four arithmetic
operations. As the keystroke sequence containing
parentheses is processed, the SR-52 automatically stores
away into internal processing registers those operands
which cannot yet be combined with other operands.

Note that starting a problem with [[(] does not usually
require using [CLR] since the number entry replaces the
number displayed when [(] was pressed. Example
problems in this manual beginning with [CLR] include
the clear operation for the convenience of showing
display contents for each step.

31

Example: (5 + (8/(9 —(2/(3+ 1))))) =?

Keystrokes
]
5

E&
8 [=]

g
8 [=]

B

SR-52 Action
Set up to evaluate expression

Store 5 internally, marked for pending
addition

Set up for evaluation of 2nd-level
parentheses

Store 8 internally, marked for pending
division
Set up third-level parentheses

Store 9 internally, marked for pending
subtraction

Set up next level of parentheses

Store 2 internally, marked for
pending division

Set up next level of parentheses

Store 3 internally, marked for pending
addition

Recognize 3 + 1 can now be performed
Replace 3 + 1 with 4

Recognize 2 -+ 4 can now be performed
Replace 2 + 4 with .5

Recognize 9 — .5 can now be performed
Replace 9 — .5 with 8.5

Recognize 8 <+ 8.5 can now be performed
Replace 8 + 8.5 with .941176 etc.

Recognize 5 + .941176 can now be
performed

Replace 5 + 941176 with 5.941176471

Recognize expression now evaluated
may now be combined in any larger
expression of which itis a part.

32

By the time [}] was encountered in the previous
example, the SR-52 had stored five operands, each
associated with an operation pending, plus the final
operand in the sequence for a total of six operands

stored in the internal processing registers. Closing the
final parentheses in this particular example caused the
whole expression to cascade down to a single evaluated
number, the SR-52 recognizing at exactly what point each
pending operation could be completed. You should key
in the expression just discussed exactly as written, and
observe the display at various points in the sequence. The
final answer is 5.941176471. The rule which results from
all this is extremely simple from the user’'s point of view.
To evaluate an expression containing parentheses, key in
the expression just as it is written. Not only does this
design feature allow you to use parentheses on the
SR-52just as you do in your analytical work, it also saves
your addressable memory registers for purposes other
than for storing operands which have operations pending.
In making optimal use of the internal processing
registers, the natural keystroke sequence with parentheses
is not only easy and natural, but is efficient in memory
usage as well. In addition when you program the SR-52
using this same capability to deal with parenthetical
expressions, you are also obtaining the most efficient
operation from an execution time point of view as well as
program code whose intent remains clear long after

itis written.

There are limits on how many pending operations and
operands can be entered in the internal processing
registers. This limit, though large enough that you will
probably never be aware that it exists, can accommodate
as many as eleven operands with ten operations pending.
If you attempt to open more than the maximum number
of pending operations, the display will flash the current
value in the display register.

33

THE USE OF (=] IN
COMPLICATED EXPRESSIONS

There is one other feature related to pending operations
which you will find particularly important. The effect of
pressing [=] in any calculation (or encountering [=] in
any SR-52 program) is to complete all pending operations.
It does not matter that the right parentheses associated
with existing left parentheses have not all appeared, for
the [=] has the effect of immediately supplying as many
right parentheses as necessary to complete the
expression. (Try working the last example, substituting

an [=] for the five right parentheses.)

Example: —10.7 + ((11.5 — 8)/(11.5 + 8)) = ?

Enter Press Display

10.7 = @ —-10.7
11.5 =] 11.5
8 DIECO 85
11.5 (%] 115
8 = —10.52051282

By now you perhaps see that the [=] is a convenience.
Itis possible to use parentheses to perform all
computations on the SR-52 without ever using [=] . This
is an important fact, which will be explored later, in the
discussion of programming subroutines.

34

IV. SPECIAL FUNCTIONS

The simplest operations of all to describe and understand
are probably the single-variable functions on the SR-52.
We will therefore first describe these functions, then go
on to the functions of two variables, and finally discuss
angular unit conversions (which are really functions of a
single variable).

FUNCTIONS OF A SINGLE VARIABLE

At any point in a calculation you can replace the value in
the display register with the implied operation represented
by any of the following keys.

(2nd] % B [
[2nd] (2nd] W [cos]
[2nd] SN [Inx] [tan

Example: Vi10=?

Enter Press Display
10 [2nd] 3.16227766
Example: In(8/3)=?
Enter Press Display
[ctr] (] 0
8 =] 8.
3 [y] 2.666666667
[inx] 0.980829253
Example: 44! = ?
Enter Press Display
44 EZTIN x! | 2.658271575 54

35

In addition to the functions already listed the following
inverse functions are available by use of the [INV] prefix:

Function Press
10* = INV LOG X (inv] [2nd) IR
e* = INVLNX [INV] [inz]
arc sin x or sin~'x = INV SIN X [INV] [sin]
arcsin x or cos 'x = INVCOS X [INV] [cos]
arc tan x or tan 'x = INV TAN X [tan]
Example: e 37 =7

Enter Press Display

3.7 [+=] —3.7

(INV] [inz] .0247235265

When a single-variable function is activated, its effect is
immediate. The display register contents are replaced
with the function value without any effect upon pending
operations. (The effect is as though one were to have
keyed in the special function value at that point.)

Example: V(6 +19)—2=7?

Enter Press Display
[cRr] (] 0

6 6.

19 EE 25.
d BRI (=] 5.

2 (=] 3

36

Now to show that pending operations are not affected by
a single-variable function, perform the following

key sequence:

Example: 6 +19—-2=7

Enter Press Display Remarks

[cLr] 0 A mere precaution

[=] 6. 6 is stored with
+ pending.

19 = 25, 6 + 19 = 25is com-
pleted and then stored
with — pending.

[2nd] 5 \/25 replaces 25 in
display register. Now
we will verify that the
pending operation
will not be affected.

2 2 2 has written over the 5
in the display register.

=] 23 The final pending

operation (subtraction)
is completed giving
25— 90— a3,

Some of the single-variable functions have restrictions
on the values of their arguments, in addition to those
necessary to avoid overflow or underflow. These
restrictions and the error indications when they are
violated are summarized in the following table:

37

Function Permissible x Values Error Indication

Vx X =0 Flashing V' x|

x! 69 = integers =0 Flashing |INT (x) !
(INT (x) = integer
part of x)

log x>0 Flashing log (/x|)

In x X =0 Flashing In (|x])

arcsinx x| =1 Flashing x

arccosx x| =1 Flashing x

Although an error condition does not result, attempting
to find the sin, cos, or tan of an angle 1.001 x 10'*
degrees or larger results in that angle’s being interpreted
as zero. As long as the display is not using scientific
notation, all displayed digits are accurate for the

range —36000 to 36000 degrees. In general, the accuracy
decreases one digit for each decade outside this range.

Angular Mode Selection —The trigonometric functions
including the inverse functions and coordinate
conversions involve knowledge about units —are angles
expressed in degrees or in radians? You will notice the
slide switch just under the left side of the display. By
sliding this switch to the right (toward the D) you place
the calculator in the degree mode. By sliding it to the left
(toward the R) you place it in the radian mode. The
placement of this switch has absolutely no effect except
when a trigonometric function or coordinate conversion
is being performed. You may therefore change this switch
setting at any intermediate point in a calculation. The
position of this switch is indicated for each problem in
this manual which depends on the switch position—
Angle:Deg means set the switch to D and Angle:Rad
means to set the switch to R.

38

Example: sin30° = ?

Angle: Deg
Enter Press Display
30 sin 0.5

Example: arcsin (.5) = ?in radians

Angle: Rad
Enter Press Display
5 [inV] [sin] .5235987756

Selecting the angular mode is an easy step to perform—
and to forget! Forgetting this step is responsible for a
large proportion of errors in operating any calculating
machine that offers this option.

FUNCTIONS OF TWO VARIABLES

Your calculator provides two functions of two variables.
The first function is powers, accessed by the [¥*] key. The
second is roots, accessed through the ¥ key. The rules
for these two functions are essentially identical:

1. To raise y to the xth power [1] enter y then [2]
press [¥*] and [3] enter the quantity x; finally, [4]
press [=] to compute the result.

2. To take the xth root of y, [1] enter y then [2] press
and [3] enter x; finally, [4] press [=] to compute
the result.

Example: 2.86 1 = ?
Enter Press Display
2.86 [>%] 2.86
.42 [+ —0.42
=] 6431707214

39

Example: *'*\/1460 = ?
Enter Press

1460 54y

3.12 =i

Display

1460.

10.33274375

Either variable x ory or both may themselves be the results
of other computations which may involve parentheses
and the proper function will be computed. Furthermore,
parenthetical expressions may contain these functions.

Example: ((11.8 — 2.49)/11)"1%16! =2

Enter

11.8
2.49
1
19
16

Example:

Enter

E- T I T

Press Display Remarks
[ew] [(] 0

=] 11.8

O] 9.31

N 8463636364 Valueofy
=] 19.

0l 11875 Valueof x
=) .8203023062 Value of y*
(3 x (42) = 9

Press Display Remarks

[etr] [T 0

][3.

T 4.

[2,

=5 7

B 1.626576562 Valueof V7
-1.626576562 Value of —(V/7)
0J 3238557891 Valueof 2~ (V7
| 1.566681134 Value of 4922

| 4700043401 Value of 3 x 4923

40

You will note that no [=] was used in the last example.
The enclosure of the whole expression with parentheses
is sufficient to cause it to be evaluated and the fact that
y*and Vy functions occur does not in any way alter the
basic parentheses disciplines already described.

There is a restriction on these functions—the variable y
must be non-negative. If y is negative the display will flash
the value of |y|* or V'|y|, for the respective exponentiation
and root-extraction functions. The quantities 0" and V0
are mathematically indeterminate forms. Attempting

V/0 produces a flashing 1. display. No error condition is
signalled for 0", which is set equal to 1.

ANGULAR UNIT CONVERSIONS

Four additional single-variable functions are provided
which were not discussed in the earlier section on such
functions. They are not standard mathematical functions,
but rather are angular-unit conversions, as shown below.

Function Press Effect
Degrees-to-radians [2nd] Multiplies displayed

valued by =/180.

Radians-to-degrees [INV] [2nd] Multiplies displayed
value by 180/,

Degrees-minutes- [2nd] [H Converts a number

seconds to decimal entered in the degree-

degrees minute-second
format to decimal
degrees.

Decimal degreesto [INV] M3 Convertsanumber

degrees-minutes- from decimal degrees

seconds to the degree-
minute-second
format.

41

Example: Convert 145 degrees to radians

Enter Press Display

145 [2nd] DTN 2.530727415
Example: Convert 2.530727415 radians to degrees
Enter Press Display
2.530727415 [inv] [2nd] 145.

The next two functions require explanation of the
degree-minute-second format. These functions allow
you to enter or display an angle expressed in degrees,
minutes, and seconds. The actual format is given by
DDD.MMSSsss where:

DDD denotes degrees,

. separates degrees and minutes,

MM denotes minutes,

S§S denotes seconds,
and sss denotesthe decimal fraction of seconds.

The number of degree digits preceding the decimal and
the number of s-digits denoting the fractional part of
seconds are not required to be three as shown, but are
limited only by the ten total digits available. The values for
MM and SS may not be larger than 97.

Example: Convert 127°09' 31.2" to decimal degrees

Enter Press Display
127.09312 [2nd] XA 127.1586667

42

Example: Convert 38.25833333 degrees to degrees-
minutes-seconds

Enter Press Display
38.25833333 [nv] [2nd] [XH 38.153
[2nd] HTW 6 38.153000

The displayed answer is interpreted as 38 15’ 30".

Notice from the last example that although the [INV] [2nd]
T3 sequence provides the necessary numerical

value, it does not automatically change the display format
so that you can observe the DD.MMSSsss representation.
You are responsible for controlling the display format.
The two D.MS functions may also be used to convert
between decimal hours and hours-minutes-seconds.

All of these angular unit conversion functions operate
independently of the position of the angular mode switch.
In other respects they behave similarly to the usual
single-variable functions, affecting only the displayed
quantity and not any other operands or pending
operations. Unlike the usual functions, however, the
D.MS functions operate on the number in the display,

not upon the 12-digit number in the display register. So
once again, remember: You must set the display format
to use the D.MS functions.

43

COORDINATE (POLAR/RECTANGULAR)
CONVERSIONS

A special capability is provided on your calculator to
allow you to easily convert between polar and rectangular
coordinates. This coordinate conversion does involve the
data memory, specifically register 00 (Roo).

The action of the polar-to-rectangular conversion is
summarized in the table below:

Register Contents

Before After
Display reg:sl',ter 0 &) s y
Memory register Roo r X

As shown in this table, with the radius r in register Roo and
the angle # in the display register, the polar-to-
rectangular conversion places the cartesian coordinate

x in Roo and the cartesian coordinate y in the display
register. The polar-to-rectangular conversion is

activated by pressing [2nd] [f[0 . The geometrical
relationships are shown below:

90 Y
P it
r
0
dBfasgl 0 —x 2
270 ~y
Polar Rectangular

44

The inverse transformation, rectangular-to-polar,
produces the result summarized in the next table:
Register Contents
Before After

Display register ¥ fl
INv| [2nd]| IZTH
Memory register Roo [2ne] 2

This is seen to be just the reverse effect of the polar-to-
rectangular transformation and is activated by the
sequence [IN] [2nd] I . Input values x and y should be
within 10-%° for proper accuracy.

To use these transformations you must store and recall
quantities using memory. The following examples show
two possible key sequences.

Example: Convert to cartesian coordinates: r = 5, 6 = 30°

Angle:Deg

Enter Press Display Remarks

5 [sTO] 00 5.

30 [2nd] 25 Valueofy
00 4.330127019 Value of x

Example: Convertto polar coordinates (radians): x=3,y=4
Angle:Rad

Enter Press Display Remarks

3 5T0] 00 3.

4 [1NV] [2nd] TN 0.927295218 Value of ¢
[2nd] [EE 00 5. Valueofr

You will see that in the first example we used the recall
instruction and just for variety we used the exchange
instruction in the second example. Each has its merits:
The recall is one keystroke shorter but we lose what was
in the display register. The exchange method does not
lose what was in the display register, swapping it with the
contents of Roo.

45

V. ALGEBRAIC NOTATION: MORE
ABOUT PENDING OPERATIONS

THE ALGEBRAIC HIERARCHY

You have already read about how parentheses may be
used on the SR-52 just as they are used in writing down
algebraic expressions. You have also read about how
these parentheses cause certain operations to be
pending, or held up until other operations are completed.
Again, this operating characteristic is like the usual
algebraic practice. In normal algebraic usage, the
sequence of operations appropriate for evaluating a
given expression is affected (and defined) by the
parentheses occurring in that expression. Specifically in
algebra, with a set of nested parentheses, the expression
must be evaluated from the innermost level of parentheses
outward. Two or more parenthetical expressions at the
same level of nesting may be evaluated in any sequence,
once one has worked out to that level. But generally the
sequence chosen in such cases is left-to-right. These
rules of normal procedure are probably so natural to you
that you hardly recognize them when they are formally
stated. You don't really think of these rules consciously;
you just know how to proceed through the tedium of
parentheses evaluation.

Now this is important: The SR-52 executes the operations
in a complicated expression in the exact sequence
demanded by the foregoing rules. It does this even though
the expression has been keyed in just as it was written.
You need not look for the innermost level of parentheses;
the SR-52 will find it (and higher levels) and retain the
proper sequence.

46

There are certain additional rules, universally accepted,
for identifying the proper sequencing of operations in a
complicated algebraic expression. These rules pertain to
the interpretation which should be made when the
completely-defining complement of parentheses is not
present. As you have probably anticipated, the SR-52 is
absolutely faithful to these additional rules as well.
Suppose one has the expression 5 x (4 + 8) x 3, the
parentheses leave no doubt as to the meaning:

5 x 12 % 3 = 180. But what would be the meaning of the
expression if the parenthese were removed?
Ex4+8x3=7

There would appear to be several possibilities of
interpretation. In addition to the interpretation already
given (leading to the answer 180) we could construct
the following:

1. (5 4) + (8 X 3) = 20 + 24 = 44
2. (5% 4)+8)x3=(20+8)x3=28x3=84
3. 5% (4+(8%3)=5x(4+24)=5x 28 = 140

There appear to be four different interpretations and
therefore four different answers. Without the parentheses
the situation seems ambiguous, and the problem is
aggravated further when the expressions involved are
longer. Is there a convention which rules in favor of one
of these four possible interpretations, or must we always
resolve such ambiguities by explicitly exhibiting the
parentheses? The answer to this question is that there is
an accepted convention; and it is known as the algebraic
hierarchy. The rules of algebraic hierarchy tell us that
unless parentheses are present to indicate otherwise,
multiplication or division should be performed prior to
addition or subtraction. So the answer to the earlier
questionsis 5 x 4 + 8 x 3 = 44, If you now try that
keystroke sequence on your SR-52, you get 44 as

the answer.

47

To discuss the complete rules of algebraic hierarchy
consider a more complicated example:

4 -+ 5 X 71 3 X sin 60 4= 17

Again, there are no parentheses to make clear the
sequence intended. All the rules of algebraic hierarchy
are required to resolve this case. These rules are

as follows:

Except as affected by any parentheses,

Immediately perform function evaluations.

Then perform exponentiation and root extraction.
Then perform multiplication and division.

Finally perform addition and subtraction.

5. Perform operations on each level left-to-right.

e T

According to these rules the foregoing expression should
be interpreted to mean

(4+5x7)+ (3 x .8660254038°)

The value of this expression is 8.391814577. Now see if
you get that answer on the SR-52. You will if you use the
natural keystrokes:

4[=]5[x]7[+]3[X] 60/ sin] [¥*] 60 [cos! [=]
(Did you remember to set degree mode?)

To summarize, the interpretation of an expression is
affected by the presence of parentheses. In places where
absence of the parentheses would leave doubt as to the
proper operation sequence, that ambiguity is resolved by
the rules of algebraic hierarchy. The SR-52 is designed to
compute in the proper sequence as determined by these
rules and by any parentheses present. If you choose, you
may forget these rules and always use parentheses to
completely determine the meaning of expressions. On the
other hand, if you become familiar with the algebraic
hierarchy it can save you from having to enter one or
more sets of parentheses in most expressions.

48

KEEPING TRACK OF DISPLAY REGISTER
CONTENTS

You will soon learn about the use of memory to store and
recall data. In order to know what quantity is being stored
in response to a [sT0] command from the keyboard (or
from a program), you must be aware of what is contained
in the display register. This is only possible if you become
adequately familiar with the subject of pending operations
as discussed up to now and practice going through
calculations step by step, trying to anticipate what will be
displayed with each keystroke. This will facilitate your
using the learn mode much more than using the calculate
mode, because in running a program you do not see what
is in the display register as the SR-52 races through the
program code. So practice in the calculate mode and you
will greatly improve your effectiveness in the learn mode.

There is one characteristic of the display register which
we have not formally explained: Whenever a number is
entered into the display register, whether through direct
digit-key entry, recall from memory, or as the result of a
calculation, it writes over the prior contents of that
register but does not affect pending operations or the
contents of the other processing registers.

Example: 5[X] 9 [rcL] 14 [=]

This sequence produces the result 5 x Ris, where R4 is
the number stored in register 14. The 9 is obliterated by
the [rcil 14,

Example: [rci] 10 11 [Ret] 12 [Red 13 [=]

This example is just to make the point again. The result of
the sequence is R to the Ria power.

49

Example: 6[+] 35 [inx] 21 [=]

In this example the answer produced is 27. The 21 entry
obliterated the In 35 present in the display register, but
the pending addition and 6 stored in the internal
processing registers were not affected. This example may
appear silly, for there was no purpose served by the In 35
calculation interjected where it was. However, the
example shows that we could harmlessly perform the

In 35 calculation in the middle of the unrelated problem

6 + 21 = 27. The fact that nothing was then done with the
In 35 result (such as storing it in memory or using it as the
basis for a decision as discussed later) is not the main
point. We could have done something with In 35 before
obliterating it. Hopefully this simple example gives you
further insight into the workings of the internal processing
registers and the display register.

Finally, a little more practical example.
Example: 9 [+] [20d] K&l [=]

This may not appear to illustrate the same point; but it
really does, as well as a second point. The answer
obtained is 9 + V9 = 12, What occurred is this: After the
9 [+, addition was pending, with 9 stored in the
processing registers, Furthermore, 9 was in the display
register. Keying in 3 at this point would have had the
same effect as what occurred as a result of [2nd] :
Namely [2nd] replaced 9 in the display register with

its square root just as though that number had been
keyed in. With addition still pending [=] completed the
calculation. This example and the ones preceding fall into
the "'peculiar-sequence’’ category. However, you will
note that in the last example 9 + \/9 was computed
without entering 9 more than once, so there was some
economy realized. You must be careful though, because if
youpress 9 [+] [=] ,youdo notget 9 + 9 = 18, but

get an error indication —you have not supplied a second
operand. In the previous example, though, the square-root
function supplies the operand as though it had been
keyed in.

50

VI. MEMORY REGISTERS

This section explains the use of the data memory which
provides twenty registers for holding data. Throughout
the manual this memory is referred to in several ways:
Sometimes it is called the data memory (to distinguish it
from the program memory), when there is little chance
of confusion it is sometimes simply called the memory,
and at other times it may be referred to as the data
registers, the memory registers, or as the addressable
registers. All of these terms mean the same thing. The
twenty memory registers are identified by two digits

(00 through 19). The registers themselves will be
designated in text by a notation such as R, referring to
data register 14. In the previous section, R11 was used to
designate the quantity stored in that register. In the
remainder of this manual, such usage would be confusing;
therefore, the notation =R will be used to designate the
quantity stored in data register Ri..

It is usually arbitrary which registers you use for storing
various quantities as long as you keep them straight. You
should exercise discretion in using register Roo because
the SR-52 occasionally uses this register for its own
purposes, namely during polar/rectangular conversions
and DSZ execution. We therefore advise you to form the
habit of not using Roo for routine data storage.

STORING QUANTITIES IN MEMORY

Consider evaluating an expression such as

10.4x% — 30x? + 9x + 2 for a value of x to be keyed in;

x = 19.2818, for example. Obviously you don’t want to key
in this number more than once. To avoid this, simply
store the number in memory the first time it is keyed in
and recall it from memory whenever it is needed in the
course of evaluating expressions. The following example
shows another effective use of memory.

51

Example:

1 4x3—?x+1 A 43 —T7x + 1
sm(8x2 —) (_Bx’ J
 (4x3 —-Tx-) 4x3—7x-1
sin 8x’ -9)¢ 8x? -9)

In addition to storing x for the evaluation of the expression
(4x* — 7x + 1)/(8x* — 9), the value of this expression
should be stored also since it is the argument of both the
sin and the cos functions. We will return to these examples
soon. For now they are presented just to show typical
situations for use of the memory.

In order to store the value contained in the display
register into a given data register, you just key [sT0]
followed by the two-digit number of the memory register.

Example: Store 19.2818 into register 05.

Enter Press Display
19.2818 [5T0] 05 19.2818
Example: Calculate 72/3 and store the result in Ris.
Enter Press Display
[2nd] B (2na] N [=] 9.869604401
3 [=] 570 18 3.289868134

Example: Compute 8 + sin V7 and store sin V' into Roo.

Angle: Rad
Enter Press Display
8 [+] 8.
[2nd] I [2nd] 1.772453851
[570] 00 9797359325
=] 8.979735932

52

RECALLING QUANTITIES FROM MEMORY

At any point in a calculation a value stored in memory
may be introduced into the display register with the same
effect as if it had been keyed in at that point. The
command sequence for this is to press [Rcl followed by
the two-digit number of the memory register in which

the number is stored.

Example: A x B"=?

Where A is the value stored in Ris
B is the value stored in Ris
n is the value stored in Roo.
Press: [rcy 19 [X | [rcL 18 [¥=] [Rcy 00 [=]
Now we can combine the store and recall capabilities and
work the examples mentioned before.

Example: Compute 10.4x* — 30x* + 9x + 2
where x = 19.2818.

Enter Press Display Remarks
19.2818 [ST0] 01 19.2818 xin Rm
5 [X] 2665249.492 x*®
10.4 =1 27718594.71 10.4x°
30 [X] [ret] 01 19.2818
] 19.2818
3 +] 27503532.57 10.4x° — 30x?
9 [Rey 01 19.2818
27503706.1 10.4x° — 30x* + 9x
2 =] 27503708.1 Answer

53

Example: Compute the following function with x = /9
radians.

. f4x3 t 4x3— Tt
a2 wime) roleons)
sin(4x - 7x 1) i (4x3—?x -_1]
| 8x?—9 8x2— 9
Angle:Rad
Enter Press Display Remarks
[2nd] EH (=] 3.141592654
9 [=1] 570 01 .3490658504 x in Ro:
EZd .3490658504
3 0425326155 x3
4 =l 1701304619 4x3
7 [X][Rey 01 [+] 2273330491 4x° — 7x
1 1= ~1.273330491 4x3 — 7x + 1
[Rcd 01 [2nd] EEl 1218469679
[x] 1218469679
8 =] 9747757433 8x?
9 [E3%] —8.025224257 8x2 —9
(=] 1586660323 y = (4x% — 7x + 1)
(8x2 —9)
[sT0] 02 .1586660323 y in Roz
[sin] [+] .1580011359 siny
(RCU 02 [cos] .9874389303 cosy
E=E0 1.145440066 siny + cosy

[Red 02 [sin] [=] 1580011359 siny
[Rcd 02 [cos] [0] —8294377944 siny — cosy
[=] ~1.38098369 Answer
The above example would have appeared complicated
if the argument had to be evaluated anew each time it

occurred. The memory has saved many keystrokes in the
evaluation process.

54

CLEARING THE DATA MEMORY

When you turn on the calculator, all addressable registers
contain the number zero. As you proceed to use the
memory, some of these registers acquire non-zero
contents. It is frequently desirable to zero all of the data
registers without turning the calculator off and then on
again (which would also destory the contents of the
internal processing registers and program memory). This
memory clearing could be done by storing zero in each
one of the twenty memory registers, but it is far more
convenient to use the Clear Memories instruction. To
clear all twenty data registers at any time without affecting
the internal processing registers, display, or program
memory, simply press [2nd] :

DIRECT REGISTER ARITHMETIC

You can store a number at any time without affecting the
display, the contents of the internal processing registers,
or any pending operations. You can also perform
arithmetic operations on the contents of data registers
without affecting the calculation in progress. You can add
the current value x, in the display register, to the contents
of any memory register; you can subtract x from the
register contents; you can multiply by x; and you can
divide the contents of a memory register by x. Of course
until you recall the resultant quantity, you cannot see that
any operation has taken place.

Again denoting the display register contents by x, and
the memory register by nn, the direct register operations
are performed as follows:
® To ADD x to the contents of R, press [suM nn
@® to SUBTRACT x from the contents of R,
press [INV] [suM nn
® To MULTIPLY the contents of R, by x press [2nd] nn
® ToDIVIDE thecontentsof R, by x press [inv] nn

55

Example: Calculate4 x 5.5, 3 x 18.9, and 11 x 42.5;
accumulate the sum of these three products in

register Ro1.
Enter Press
0 01
4 x]
5.5 =
lsum 01
3 x]
18.9 =l
[sum 01
1]
42.5 =]
[sum 01
[Ret 01

Display Remarks
0. 0.in Ro:
4,
22. 4x55
22. Sum 22 into Ro
3
56.7 3x189
56.7 Sum 56.7 into Ro\
11.
467.5 11 x 425
467.5 Sum467.5into Rm
546.2 Final sum

Example: Compute 877/3 and store into Ris, then
compute e' %8 + 4 and divide the contents of Ris by this
quantity, leaving the results in Ris.

Enter Press
8 [X] [2nd]
(20d] I (=)
3 [=] [sto] 18
1.08 [nv] [inx] [+]
4 =]
(INV] [20a] [0 18

[Rct 18

Display
3.14159264
78.95683521
26.31894507
2.944679551
6.944679551
6.944679551

3.789799785

Remarks

872/3in Ris
el.l}&
el 08 4 4

*Ria/(e' 0 + 4)
inRis

When direct register arithmetic results in overflow or
underflow, a flashing display results, indicating the error.

56

MEMORY/DISPLAY EXCHANGE

An additional memory instruction is available which
combines the effects of a store and a recall instruction
in a single step. This is the exchange instruction. You
may remember it from the discussion on polar/
rectangular coordinate transformations. Like all other
memory operations, the exchange does not affect
pending operations.

The effect of an exchange is to simply swap the contents
of the display register with the contents of the memory
register named in the command. The proper command
sequence for an exchange is followed by the
two-digit register number.

Example:
Enter Press Display Remarks
18 [sT0] 01 18. 18.in Roy
42 x1 42,
3 [=1 126. 42 %3
[2nd] IEX 01 18. 126. in Ros
(=] 108.
[rct 01 126.

The effect of the exchange function in this example was
to store 126 (the result of 42 x 3) into Ro) while recalling
the earlier contents of Ro1, namely 18. The pending
subtraction was unaffected by the exchange.

This instruction may be used for several purposes. One
is to store a quantity that will be needed later while also
recalling a quantity previously stored. Using exchange to
accomplish this is not only efficient from an instruction
(keystroke) point of view, but also from a memory usage
point of view. One data register serves for two data,
storing the second data value immediately upon
releasing the first.

57

SUPPLYING MISSING OPERANDS
WITH MEMORY FUNCTIONS

There is one effect of all memory operations which has
not been mentioned. After these operations have taken
place, it is just as though the quantity in the display
register had been keyed in. You may recall from the earlier
discussion that single variable functions behave the same
way. This allows us to key in 9 [+] [2nd] [=] [=] and
obtain 12, whereas [9] [+] [=] gives an error
indication (lacking a second operand) rather than 18 as
one might guess. The square-root function replaced 9

in the display register with 3, exactly as though 3 had
been keyed in, and thereby provided the second operand

to gowiththe [9] [+] .

The memory functions behave the same way. You may
not have noticed, but in the solution of the example on
page 54, the following keystroke sequence was included
(beginning in the second line):

(=1 [[579] 01 [%] 3 (] ...etc.

A more straightforward procedure would have been to
perform the (STO] 01 before the [(], and then to continue
Rcy 01 [¥*] 3 [X] ...etc; but this would seem a bit
wasteful of keystrokes to recall a quantity into the display
register which is already there. Therefore, it is tempting
to eliminate the [RcL] 01 from this sequence. However, an
error condition would then occur, because we would

be missing a first operand in the resulting sequence]
[¥%] 3 [X]. By placing the [ST0] 01 inside the parentheses,
the effect just after the [sTo] 01 was as though the value

in the display register had been keyed in again; and the
first operand for the Y* function was provided.

As a matter of fact, it is not even necessary to actually
perform a store, recall, sum, or product to accomplish
this effect. The single keys [s70], [Rc], [EXC|, [SuM, and [2nd]
[serve this same purpose even when not followed by
a two-digit register number. Although it falls in the

58

category of a peculiar key sequence, a very useful
construction is the following:

[...Sub-Expression...] [(] [sTo] OP....etc,

where OP denotes any operation. If the subexpression

in brackets is needed again as the first operand in the
parenthetical expression, then rather than storing it and
immediately recalling it from memory, the [sT0] alone can
accomplish the same purpose. To demonstrate this let's
firstreturnto 9 [+] [=]

Example:
Enter Press Display Remarks
9 9. Addition pending
[sTO] 9. Does not store, but has

effect of reentering contents
of display register

= 18. 9+9
Example: Evaluate 1.401103287' 40103287
Enter Press Display
1.401103287 1.401103287
1.401103287
=] 1.604057054

(2B = 21)I (28.7—21) _

Example: 45 —58) '°9 42 -9.8)
Enter Press Display Remarks
{R]
287 =] 28.7
21 O] a 7.7 (28.7 —21)
a2 [=] 42.
(28.7 — 21)
9.8 [2391304348 (G55
[2nd] W =] ~.1485873176

59

VIl. RUNNING
PRERECORDED PROGRAMS

The most effective use of the SR-52 is realized when you
run a stored program. The instructions for using each
program are unique for that particular program, so we
cannot attempt to properly cover every program here.
Programs in the Tl Program Library (such as the BASIC
PROGRAM LIBRARY included with your SR-52) have
detailed instructions for using each program. In the case
of programs you have written yourself, we strongly
recommend that you write down the detailed operating
instructions as an essential part of the programming task.
Otherwise, you will be surprised how easy it is to forget
how to use even a well-designed program. The next
sections deal more with programming your SR-52, both
the mechanics and questions of technique and style.
There are two basic steps necessary to run all prerecorded
programs: reading the magnetic card and beginning
execution.

READING A MAGNETIC CARD

A magnetic card provides the means for storing 224
prerecorded instructions. This is the exact size of the
program memory. The first time a read operation is
performed, [CLR] is pressed to ensure that side A of the
card is read into the top half of program memory
(locations 000-111). The second read operation then enters
card data into the bottom half of program memory
(locations 112-223). Subsequent read operations alternate
between the top and bottom halves of program memory.

CAUTION: Prerecorded magnetic cards may be damaged
or altered if exposed to dust or foreign materials,
permanent magnets, or electromagnetic fields such as
near electric motors or power transformers.

60

Refer to Maintenance and Service Information in this
manual for instructions in caring for and using magnetic
cards.

The following steps should be followed to read the
contents of a magnetic card into the program memory.

1. Press [CLR] .

2. With the power switch on, read side A of the
prerecorded card:

[2nd] EE (Insert card side ®AK)

Do not restrict or hold the card after it is caught by the
drive motor. The display will remain blank until the
calculator has completed reading side A.

61

[#%]

. After the drive motor stops, remove the card from the

left side of the calculator and read side B of the
prerecorded card as follows:

[2nd] (Insert card side ®#Bx)

The display will remain blank until the calculator has
completed reading side B.

. After the drive motor stops, remove the card from the

left side of the calculator and insert it into the upper
slot on the calculator so that side A of the card shows
in the window above keys [A] through [E | .

62

5. If the display flashes immediately following step 2 or 3,
repeat the procedure beginning with step 1. If difficulty
persists, refer to Maintenance and Service Information
in this manual.

The program is now loaded into program memory and
will remain there until the calculator is either turned off,
another card is read, or new instructions are keyed in by
passage to the learn mode.

If for some reason it is necessary to read a program
segment into the second half of program memory without
first reading a segment into the first half, the keystroke
sequence is [CLR] [2nd] B [HUT] [2nd] B2 | followed by
insertion of the card.

Of considerable significance is the fact that loading a
program into the program memory does not affect the
memory registers, program flags, program counter, or
display format. In addition, by remembering which half of
the program memory was read last (thus allowing

step 110 be omitted) a program can be loaded without
affecting internal processing registers or the displayed
number. This means that if you find you cannot fit an
entire program into 224 steps, there is still a good chance
to partition the total program into segments or load
modules which separately do fit into the program memory.
The program is then executed by sequentially reading and
running the load modules.

63

EXECUTING A PROGRAM

Execution of a well-designed program is started by
pressing one of the ten user-defined label keys: [[A7]
through [E] or Ml through [2nd] I . These keys
are special in that pressing one causes the calculator to
position the program counter to the pointin program
memory so labeled and to switch into the run mode as
soon as the counter is positioned.

Another method to start program execution is to position
the program counter to the desired starting point while
the SR-52 is in the calculate mode, perhaps enter data
with the keyboard, and finally enter the run mcde by
pressing [RUN. Positioning of the program counter may be
accomplished with the go-to instruction (abbreviated [GTo]
on the keyboard) which will be discussed in the transfer
instructions section. More likely. if the program counter
needs positioning it is to the very top of the memory; and
one can accomplish this by [2nd] [l . If the program has
been partitioned, the reset instruction may not be
appropriate as it also clears program flags and subroutine
return-pointer registers.

64

VIll. GENERAL
PROGRAMMING INSTRUCTIONS

From what you have learned in the preceding sections,
you are already basically prepared to write useful
programs for the SR-52. This comes from the fact that
each keystroke in the calculate mode may be stored ina
program location in the learn mode (where it is called
an instruction). And when this instruction is executed in
the run mode it has the very same effect as would have
been obtained by that keystroke in the calculate mode.

There are still a few ingredients missing, however, if you
are to make the best use of the SR-52. The first group of
ingredients is essential: a handful of controls which
allows you to specify when the program should halt for
data entry or for you to look at the answer, the label
statements which allow you to conveniently start
execution at different points in the program and that sort
of thing.

The second group of ingredients includes those
instructions which substitute for your eyes and your
judgment during program execution. These instructions
are those which determine what shall be done next, based
on the conditions which have been obtained so far. You
cannot directly engage in this process in the run mode;
since everything happens too fast, and the display is
blanked. Thus you must make the basis of any decisions
known to the calculator. For example, in a trial-and-error
solution to a problem, you would stop when the answer
had been “'bracketed’ to within the tolerance you desired.
The SR-52 has a number of instructions which, when
used in combination with the others, can perform this
type of decision making.

The third set of programming ingredients will complete
your full capabilities as an SR-52 user: They relate to a
very orderly method of problem solving which the SR-52
provides. The method consists of defining the answer to a

65

problem from the top down: You write the answer in
terms of other quantities. Rather than defining and
evaluating those quantities on the spot, you just give them
aname (which is a label to the SR-52) and go on with

the main problem definition. When you are ready to define
those quantities which have been only named until now,
you do so immediately following the appropriate label.

The actual SR-52 evaluation of the problem solution in
the run mode will invoke all those detailed definitions
which had been delayed until you completed the
statement of the whole problem at a higher level. It will
invoke those definitions simply upon recognizing the
names (or labels) assigned, and will automatically insert
the labeled definitions and evaluations of the deferred
quantities. This method of top down problem solution is
made possible by the subroutine capability. The SR-52
provides for automatic performance of program
execution at three levels. This means that not only can
you simply give a deferred quantity a name in the main
problem definition, you can also (in defining those
deferred quantities) give names to quantities whose
definitions are to be deferred even further!

Addition of these three ingredients to your programming
skills is the primary function of the remaining sections
of this manual.

ELEMENTS OF PROGRAM EXECUTION

There are 224 locations in program memory, numbered
from 000 through 223. Each location can hold one
keystroke. Do not count [znd] as a keystroke, for example
[2nd] requires only one program memory location.

When the calculator is in the run mode, the sequencing
of the program steps is accomplished by means of the
program counter. This may be thought of as a marker

66

which moves through the program memory which
indicates the next instruction to be executed. The
normal operating sequence in the run mode is very
straightforward:

Instruction (keystroke) executed ; program counter
advanced one location.

Instruction executed; program counter advanced.

Instruction executed; program counter advanced.

(etc.)

In this *'normal’’ sequence, the SR-52 steps through
program memory, executing the instructions in exactly
the order in which they appear. If the calculator attempts
to go past location 223 it will flash the value in the display.

Certain types of instructions alter this simple top-to-
bottom execution of the program. These are the transfer
instructions. Detailed discussion of these is deferred until
a later section; but this is an appropriate point to explain
how these instructions alter the normal sequence.

There are two types of transfer instructions, unconditional
transfers and conditional transfers. The names themselves
convey the difference between these two types. When an
unconditional transfer instruction is executed, it
unconditionally repositions the program counter to the
location specified in the transfer instruction. This
destination therefore becomes the next instruction
executed, and the program counter is then advanced a
step at a time until another transfer instruction is
encountered.

The conditional transfer, or branching instruction, is
similar to an unconditional transfer except for one thing:
A branching instruction first performs some test (for
example, is a flag set or is the display register positive?);
the transfer occurs only if the test is affirmative.
Otherwise, the program counter is advanced (or “‘falls
through') to the next location, as usual.

67

The time history of a typical program using transfers

might be as follows:

Execute instruction;
advance counter.
Execute instruction;
advance counter.

.

.
Execute instruction;
advance counter.

1) Reposition counter.
(2 Execute instruction:
advance counter.

.
.

Execute instruction;
advance counter.
Perform test (affirmative
result);

Reposition counter.
Execute instruction;
advance counter.

.
.
.
Execute instruction;
advance counter.,
Perform test (negative
result)
advance counter.
Execution instruction;
advance counter.

(etc.)

In this illustrative sequence, an unconditional transfer
occurred at point 1, transferring to the location of the
instruction executed next at point 2. At point3 a
branching instruction was executed with an affirmative
result. This caused transfer to the location of the
instruction next executed at point 4. At point 5 of the
process a branching instruction was executed with
negative result and the instruction counter fell through

to the next program location.

MECHANICS OF PROGRAMMING

What are the steps involved in creating a program for the
SR-527 From beginning to end they are essentially the
following:

g ¢
2

3.

6.

i

8.

9.
10.
3}
12.
13.
14.

Gather equations which pertain to problem.

Define numerical approach (algorithms) for solving
equations.

Determine how you would like the program to be used
(input data, quantities computed, operating
instructions, label assignments, etc.).

. Conceptualize flow of program. If it is complicated

(many transfers) then flow-charting is recommended.
Even better, try to simplify program structure after it
is flow-charted.

. Begin making data register assignments. This task

continues through the programming process. (Do not
store a quantity in memory without making a written
note that the register in question contains that
quantity.)

Actual coding: Write down the instructions on a
coding form which numbers the locations.

Make corrections to code, memory assignments, or
even procedure for program use if necessary.

Place SR-52 in learn mode.

Key in program.

Place SR-52 in calculate mode.

Record program on card if desired.

Check out program on test problems.
Make any necessary corrections.
Document completed program thoroughly.

69

If these steps are performed deliberately, you are more
likely to be satisfied with the result. For example, if you
do not spend some time defining how you would like the
program to operate (the third step in the foregoing list),
then the user features of the resulting program may leave
you less than satisfied. Preliminary efforts are well spent;
because after you have designed and documented the
program you can conveniently use it at any time.

Another way of stating this advice: The programming
language of the SR-52 is so easy to use that the coding
phase of programming is simple. Free from this concern,
you can spend most of your effort in the definition of the
problem and in enforcing the requirement that the
resulting program conveniently meet your problem-
solving needs. Comparison of BA1-08 with the compound
interest programs developed at the conclusion of Section |
should illustrate the point.

70

DEVELOPMENT OF PROGRAMMING STYLE

We would like to make a last point about the nature of
the programming process, whether for an SR-52 or for a
large-scale computer. There is no single correct
programming solution to a problem. Just as no two
writers use exactly the same words to describe the same
thing, no two programmers use exactly the same
instruction sequences to solve a given problem. As you
gain experience in programming the SR-52, you will
develop your own unique style. That style may become
one of incredible craftiness and ingenuity which makes
frequent use of all the instructions available. Or it might
become one of conservative and straightforward coding,
using primarily the more basic instructions, taking up
more program memaory space, but so clear in purpose
that program operation can easily be discerned simply
by inspecting the code. Each of these style extremes has
advantages and shortcomings. The best style for you is
the one that best meets your needs: If you can solve your
problems without use of branching or indirect addressing,
then just don't use those instructions (until your

needs change).

Many SR-52 users will solve their problems very
comfortably using only a portion of the SR-52 capability.
If on the other hand your problems require complicated
but more efficient program structures, you will find
yourself developing a style closer to the crafty-but-
obscure end of the spectrum.

)

IX. ELEMENTARY PROGRAMMING

USING LABELS

When you execute a program, it is necessary that the
program counter be properly positioned and that the
calculator be switched to the run mode. Positioning the
program counter can be accomplished with the help of
labels. Automatic switching to the run mode may also

be accomplished by using the special labels [A'] through
[E] and [2nd] IIM through [2nd) H@ . These special keys
are also known as the user-defined keys, because the
effect of pressing one is to execute the program defined
and so-labeled by the user. We will first discuss these
special labels and then discuss the other types of label.

Using the concept of the program counter developed in
the last section, the effect of pressing one of the user-
defined keys in the calculate mode is as follows:

1. Positions the program counter to the first location
after the corresponding label in program memory.

2. Switches the calculator into the run mode.

This means that if you wish to begin execution at (or
transfer to) a given location in program memory, the
simplest technique is to provide a label in the program
code just prior to that desired location. This label is
placed in program memory by the instruction [2nd] :
followed by the label itself:

72

Example: Suppose you would like to cause the following
process to take place simply by pressing the key [C] in
the calculate mode:

Key

MENEEHEEE

(etc.)
Then, code the following sequence into program memory:

Ke
(20d]

-

T0

BH

MEBMHE

sin

(etc.)

73

Wherever that sequence occurs in program memory,
pressing [€] in the calculate mode will find it and cause
execution to take place starting at that point.

Labels (of any type) may be placed anywhere in a program
instruction sequence without altering the meaning of that
sequence. They are simply ignored during instruction
processing except for the purpose of locating a desired
pointin program memory and do not affect pending
operations. This statement is not intended to mean that a
label in a program can interrupt a sequence such as

[RCL] 03, where several program locations are involved in
defining a single processing action.

You do not key in labels after the rest of the code is
written. You conceive the need for and define your labels
as part of the program design process. They are keyed
into program memory along with the rest of your code,
just as though they were any other instruction steps.

Actually, any key (including second functions) may be
used as a label except the following:
(2nd] . [LRN], [iNS], [2nd] IEEN . (SST). [2nd] BN , and the
digits [0] through [[9]. Note that the second functions
of the digits may be used as labels: [2nd] Il and
(20d] [1] through [2nd] [9].

We have explained how to use the user-defined keys as
labels. The other labels are not used in an identical way.
For example, just pressing [sin] in the calculate mode
would not cause the calculator to search for a location so
labeled and begin execution there, even if there were a
[2nd] [T [sin] sequence somewhere in the program. We
will discuss how to use such labels in the next section.
However you should know that, however they are used,
the placement of those labels in the code sequence is
identical to what has already been described: To establish
alocation labeled “'sin" in the program memory, just key
the instructions [2nd] T [sin] in the locations
immediately preceding the one which is to acquire that
name. No two program locations in program memory may
have the same label.

74

USING RUN AND HALT

You have learned how to start program execution, but not
how to stop it for keying in data or for looking at results.
Halting a program at specified points is accomplished by
the halt instruction [HIT]. Upon execution of a halt
instruction encountered in the program, the program
counter indicates the first location after the halt and
program execution stops; there is an immediate transition
to the calculate mode, and hence calculator control is
returned to the keyboard. By pressing [RUN], the run mode
is restored and execution is resumed from the point
indicated by the program counter.

Thus sequences of halt instructions (in the program) and
[RuN] commands (from the keyboard) enable control to be
passed back and forth between the program and the
keyboard.

The halt command entered from the keyboard when the
SR-52 is in the run mode will stop execution of a program
and return control to the keyboard. The program counter
is left wherever it happened to be at the time of program
interruption. Program execution will be resumed at that
location when [RUN| is pressed. The following example
shows how you might use what you've just learned to
calculate the volume of a right circular cylinder.

75

Example: Calculate the volume of a right circular cylinder
of radius r and height h; V = & r*h. Program Operation
Desired: Key inr, press [A], then key in h, press [RUN| and
see the answer.

Solution:
Key Remarks
[2nd] Labels start of program
[a] to calculate volume.
[2nd] IEEEN r? (Remember r was entered
] before [A | was pressed).
z0d) KA
[x] 7 r? in display register.
[HLT] Allows h to be entered.
[=] V = 7 rh,
[HLT] Program stops; V displayed.

ENTERING YOUR PROGRAM

The sequence for keying your program into program

memory is as follows:

1. With the SR-52 in the calculate mode press [2nd] IEN |
which positions the program counter to 000, the top of
the memory.

2. Then press RN, placing the SR-52 into the learn mode.
You will see five digits in the display. The first three
digits show the position of the program counter. The
last two digits show the two-digit code of the key
instruction currently stored in that location.

3. Key in your program completely: one step at a time,
including all labels, not forgetting any necessary [2nd]
prefixes.

4. Make sure your program did not exceed the program
memory size. After filling location 223 the SR-52
switches to the calculate mode, and the five-digit
display format of the learn mode will be conspicuously
absent.

76

5. Switch from the learn mode to the calculate mode by
pressing [LRN] .

6. Run a test problem and correct or edit your program as
required.

7. You are now ready to record your program if desired.

RECORDING A MAGNETIC CARD

You can permanently record any program stored in the
calculator on a blank magnetic card furnished with your
calculator. The magnetic card provides permanent
storage for your program —the contents of the calculator
memory are lost if the calculator is turned off. The
magnetic card is designed to store one-half the calculator
program memory (program locations 000 through 111) on
side A of the card and the other half of the program
(program locations 112 through 223) on side B of the
card. For additional blank magnetic cards, check with
your dealer or call Consumer Relations at the toll-free
numbers listed on the inside front cover of this manual.

The procedure for recording a program is similar to
reading a program. The write command is the inverse of a
read; therefore to write press [INV] [2nd] 2 °. To write the
first 112 program steps on a card, use the sequence

[cLR] [INv] [2nd] D" (in the calculate mode) and feed the
card into the slot. If necessary, the remaining 112 locations
may be recorded by again pressing [INnv] [2nd] 1 "

As in reading cards, if it becomes necessary to record
only the second half of program memory use the key
sequence [CLR] [2nd] [HLT] [INV] [2nd] D *. The

[CLR] [2nd] R portion of this sequence guarantees
that the next read or write to program memory will involve
the second half of program memory.

‘Magnetic cards are protected against accidental writing.
Therefore, before writing, place black self-adhesive tabs
(supplied with calculator) over the write-protect windows
at the tip of the arrows on the card.

7T

EDITING PROGRAMS

In the process of keying in a program you have the
following capabilities on the SR-52: 1) display the location
and instruction currently present, 2) replace that
instruction with another, 3) delete that instruction and
close up the hole, and 4) make a space for a new
instruction to be inserted. In addition, you may single-
step forward or backward through the program. These
capabilities permit you to make corrections or
modifications to a program without reentering
instructions which require no changes.

Displaying the Program

In the learn mode, the display is designed to show you
where the program counter is positioned in program
memory and the instruction presently residing in that
location. The first three digits are simply the location.
The second two digits, set off from the first three, are
indicative of the instruction present according to simple
rules.

Each instruction is assigned a two-digit code based on
the location of the corresponding key on the SR-52
keyboard. The first digit denotes in which of the nine rows
(numbered 1 through 9 from top to bottom) the key is
located. The second digit establishes which of the five
columns, numbered from left to right. To distinguish
second functions from first functions, the columns are
labeled 1 through 5 for first functions and 6 through 0
for second. The digit keys 0 through 9 are designated by
the codes 00 through 09. The null instruction is also
represented by 00. Refer to the following key-code
cross references:

78

Figure 1a. Program Key Codes

Key Key Key Key Key
Key Code Key Code Key Code Key Code Key Code

EN ¢ KB 7 B 18 EE 19 B 10
7[R o Py M A [[P e o W v B PR [T [

5 27" IE1 28 EW 29 B3 20
nd — [w] 22 [inx] 23 [CE] 24 [cR] 25
Il 3 @@ 37 E@ 38 DA 39 30
[RN] — [sin] 32 [cos| 33 [tan] 34 [35
M 46 A 47 EA 48 49 EF 40
[0 41 ([st0] 42 [Rcy 43 UM 44 [¥*] 45
I 56 NN 57 K 58 E@ 59 EA 50
B8R 51 [DEEbmMS2h C&ulESr Mudesd [EE=] 55
m - 67 68" 69° EM 60
] — [7] o7 [B] o8 [®] 09 [X] 65
[bt [— 7 78" 79° EE@ 70
B = (@) 04 [5]. 05 B8] 06, =l 76
ER 86 87" 88" 89 A 80
(B 81 (A5 01 92 iE] 03 [=Ees
E 9% I 9 EN 9% ©ER 9 [9
RUN 91 [o] 00 [+] 93 [94 [=] 95

— Key codes omitted for functions that cannot be stored in a program.

*Second functions of unmarked keys that may be used as labels, however,
first-function numeral keys may not be used as labels.

79

Figure 1b. Program Key Codes

Key

Code Key

00 (0]

O RS 0]

02

03 34

04 [a]

05 5]

06 [6]

07 7]

08 3]

09 9]

10 2nd| IEH
11 @]

12 8]

12

14 [D]

15 [E]

16 [20d) WO
17 [20a) WA
18 [znd) NG
19 [2nd]
20 [2nd]
22 [Nv]

23 [ina]

24 [CE)

25 [cLR]

27" [20d] [iNV]
28 [20d) A
29 [zed) ERA

Key

Code Key

30 [2nd]
32 [sin]

33 [cos]

34 [tan]

B [FE

36 [z0d] N
37 [KA
38 [2d] N
39 [zed] N
40 [z0d) R
41 [eTo]

42 [sT0|

43 [Rey

44 [sum]

45 [7=]

46 [2nd]
47 [znd] ER
48 [zad) EE
49 [znd]
50 [20d) EN
51 [ser]

52 [EE]

S0 Sk

54 [1]

55 [=]

56 [2nd] ETH
57 [2nd]
58 [2nd] TR
59 [2nd] IEH

"Key codes which should only appear as labels.

80

Key
Code Key

60
65
67"
68"
69"
70
75
7
78"
7O
80
81
85
86
87*
88’
89"
90
91
93
94
95
96
97
98
99

(20d) (Y
x]

] [7]
[20d] (8]
(2nd] [9)
znd] X
o=

(2nd) (4]
[2nd] [5]
(2] [
(znd] [
HLT

(20d] EN
(zmd] [1]
[2nd) (2]
[20d] (3]
(2nd] O]

Through use, you will soon become familiar enough with
the codes for the more common instructions such as
[2nd] MW . [O], [], that constant reference to the
keyboard will not be necessary. The others are quickly
interpreted by reference to a keyboard, of course.

Replacing an Instruction with Another

In accordance with the foregoing discussion the display
shows the position of the program counter (i.e., the next
instruction location) and the instruction currently there.
To substitute another instruction into that location, simply
key in the new instruction and it will replace the old one

in that location.

Deleting an Instruction

One may delete the displayed instruction and move all
those beyond it up to fill the space. This operation is
performed by pressing HZB . As aconsequence of
the closing-up operation in instruction deletion, the last
location in program memory (223) would be undefined.
Consequently, a null instruction is placed there as a
result of a delete operation.

81

Inserting an Instruction

Sometimes you may wish to insert an instruction at the
location indicated by the display without destroying the
one already there. This involves a two step process:

Step 1. Press [INS] to push down the displayed instruction
(and those beyond it in program memory) one location,
leaving a null instruction in its place.

Step 2. Key in the desired instruction in place of the null
instruction.

Note that if several sequential instructions are to be
inserted the procedure would be: [INS] (key 1), [INS] (key 2),
[ins] (key 3), etc., where key 1, key 2 and so on represent
the instruction keystrokes to be inserted. Finally, note
that each instruction insertion causes an instruction at
location 223 to be lost, being already in the last location of
program memory.

Single-Step and Backstep

You will frequently wish to examine portions of your
program as stored in memory. The single-step instruction
allows you to do this. Pressing [ssT] in the learn mode will
increment the position of the program counter by one
without affecting the stored program in any way. Pressing
it repeatedly, therefore, allows you to sequentially step
through the program memory, observing the codes for
instructions stored there. If you attempt to single step
past 223, the SR-52 will switch into the calculate mode.

82

Similar to the effect of the single-step instruction, the
backstep instruction allows you to reposition the program
counter by one location without affecting the stored
program. The backstep instruction is commanded by
[2nd] IEM . It causes the program counter to decrement by
one, or move upward in the program memory. A common
use for this instruction is to go back and verify that an
instruction just keyed in is the one desired. More
generally, the backstep instruction combines with the
single-step instruction to provide you with all the tools
you will need for convenient program editing.

The single-step instruction is executable in the calculate
mode as well as the learn mode. In the calculate mode the
effect of [ssT] is to cause actual execution of the stored
program, one instruction at a time. Each time [SST] is
pressed, the instruction located at the current position of
the program counter is executed and the program
counter is advanced or repositioned just as it would have
been in the run mode. Conditional branches behave just
as in the run mode, for example. Sometimes several
single-step keystrokes are required before anything
appears to happen; but this is only because the operation
in process is a multistep one. For example, the sequence
[RCL 10 would require three single-step keystrokes before
the recall of Rio would actually take place. The primary
function of this single-step type of execution is to assist
in program checkout and "“debugging’.

PRACTICE PROBLEMS

Example: Write asingle program to convert temperature
from degrees—Fahrenheit to degrees-Celsius using

label A, and from Fahrenheit to degrees—Kelvin using
label B. The relevant equations are:

C = (5/9) (F — 32)
K=C +273.15

Possible Solution:

LOC |CODE| KEY LOC |CODE| KeY
000 | 46 | *LBL 46 | "LBL
12 |B AL T [

85 |+ 75
04 |4 03 |3
09 |9 02 |2
05 | 01 |1 95 |=
KAl 015 165 | x
06 |6 05 |5
o7 |7 55" |+
0919
95 |=
020’5 [E ST ELT)

‘Denoles 2nd lunction key

The above coding is not the straightforward solution you
might have expected, however, it is a prime example of
how two seemingly unrelated problems can be
programmed to function together.

Example: Write a program to convert from spherical to
rectangular coordinates. Design the program so as to
operate as follows:

84

Enter p. ¢, and # respectively through the A, B, and C keys
(in any order). Find x, y, and z via the D key, with x given
first, then press [RUN] to display y, and [RUN| again to

display z. 3
z = pcos & FaN P
x = p sin ¢ cos
y = p sin & sin # P z v
A
X y
Possible Solution:
LOC |CODE| KEY LOC |CODE| KEY LOC |CODE| KEY
e W 5 R 46 | "LBL 43 | RCL
1] A 14 | D 0 (0
42 | STO 920 S MaieRGL: 0313
00| 0 00 |0 39 | *PIR
01| 1 0|1 DR 4B EXG
oo MBI HIT: 42 | STO 00 |0
46 | "LBL 00 |0 00 |0
12158 025 | 00 | 0 81 | HLT
42 | STO 43 | RCL 43 | RCL
00| 0 00 |0 oass 10050
1051022 02 | 2 00 |0
81 | HLT 39| PR 81 | HLT
46 | "LBL | | 930 | 48 | *EXC 43 | RCL
13]|C 00 |0 00| 0
42 | STO 00| 0 050 1 04 | 4
ANIENE000) 0 42 | STO 81 | HLT
B3 00| 0
81 | HLT s | 04| 4

"Denotes 2nd function key

85

Again, the proposed solution is a bit tricky; and provided
that your program gives the correct answer, ours is no
better. Even so, it may be instructive to see how the
program segment starting at label D works. The nine steps
preceding the [2nd] sets up the polar-rectangular
conversion to produce p sin ¢ in the display and z in Roo.
Next we exchange the contents of the display and Roo

and store z away in Roa for later recall. Next we recall ¢#
into the display register from Ros and perform another
polar-rectangular conversion leaving y in the display
register and x in Roo. Another exchange places x where
we want it for the first program result, the display register.
Following the HLT to allow us to see the value of x, y is
recalled from Roo and another program halt is provided.
Finally, z is recalled from Roa and the program is halted
for the last time.

Example: Write a program to compute the average value
of any number of values xi, Xz, ..., X,. The desired
operation is that after initializing using key [E |, the
values of x1, x2, etc. are entered using key [A | for each
entry. It should not be necessary to know the total number
of values to be entered ahead of time; and at any stage in
the process the average of the x values up to that time
should be given by using key (B].

86

Possible Solution:

LOC |CODE| KEY | | LOC [CODE| KEY
000 146 | *LBL 46 | “LBL
15 |E TE A
47 | “CMs Sa

81 | HLT 43 | ROL
46 | *LBL 00 |0
| LA 01 |1
44 | sUM [[9%® |55 [+
00 |0 43 | ROL
01 |1 00 |0
01 |1 02 |2
010 | 44 | SUM 54 |)
00 |0 022 ul| g1 B HHEET
02 |2
81 | HLT

‘Denotes 2nd function key

None of these problems are trivial. All are sufficiently
complicated that you would be more likely to solve them
correctly through programming than by attempting to
perform all of the required operations directly from the
keyboard in the calculate mode. This is important, and we
wanted to demonstrate it to you through these examples.
(Try performing these problem solutions in the calculate
mode.) In the introduction we said “'the SR-52 is a
problem solving machine,” and we hope you now see one
of the reasons this is true. The type of problem you will be
able to solve reliably through the several-stage process
(problem definition, coding, program execution) using
the SR-52 is much, much more complicated than would
be possible without this calculator. The execution of
some programs will produce the equivalent result of
automated hundreds or even thousands of keystrokes
perhaps involving decisions to be made, as well.

87

X. TRANSFER INSTRUCTIONS

The background relating to transfer instructions was first
presented in Section VIIl. However, this section enlarges
on that basic information to help you fully understand the
uses of the transfer instructions. In general, transfer
instructions are known as branching instructions. There
are two types: unconditional and conditional. In this
manual, only the conditional transfer instruction is
referred to as a branching instruction.

UNCONDITIONAL TRANSFER INSTRUCTIONS

There are two types of unconditional transfer instructions:
the go-to ([6T0]) instruction and the subroutine [sBr]
calls. We will not discuss the subroutine type here,
deferring that discussion until the next section, which is
devoted to subroutines. Unconditional transfer to a given
program location occurs when [GT0], followed by the
three-digit address (program location number) of the
destination, is encountered in the program. For example
the sequence [6T0] 037 causes immediate repositioning
of the program counter to location 037. The destination
of a go-to instruction can also be specified by means of

a label name following the go-to statement. For example,
the sequence [610] [sin| would cause a transfer to the first
location in the program after the sequence I [sin] .

88

Actually, either type of go-to command, specified by a
three-digit address or by a label name, can be executed
in the calculate mode. However, when executed from the
keyboard the only effect is to reposition the program
counter. The calculator remains in the calculate mode
following the [6T0) command. Thus, the effect of pressing
610] [A} would be different from simply pressing [A |

in this respect.

CONDITIONAL TRANSFERS
(BRANCHING INSTRUCTIONS)

There are basically four different branching instructions
available (in addition to the DSZ, which is discussed
later). They are the [2nd] . [2nd] [. [2nd) [XA . and

[2nd] [T instructions. Each of these has an inverse
instruction as well. These four types of branching
instructions all operate the same way. At the time of
encountering them, a test is made to determine if a certain
condition is true. If the result is affirmative, transfer is
made to the location specified by a three-digit address or
label name immediately following the instruction, just as
in the unconditional transfers. A false result causes

no such transfer to take place, and the program counter
continues to the next program location immediately
following the three-digit address or label.

The inverse instructions to these four are realized by
prefixing the basic branching instructions with [INV] .
These inverse branching instructions test to determine if
a certain condition is false. If the condition is false, a
transfer occurs and if true, no transfer takes place.

89

The eight types of tests made by these branching
instructions are as shown below:

EZTN if o] Is an error condition present (overflow,
underflow, invalid argument, invalid
operation)? Transfer if answer is yes.

[INV] [2nd] Is an error condition present? Transfer
if answer is no.

[2nd) [IA Is the program flag specified by the next
digit (0 through 4) set? Transfer if
answer is yes.

[iNn] (znd) EIIl Is the program flag specified by the next
digit set? Transfer if answer is no.

[2nd] [T Is the content of the display register
positive (equal to or greater than zero)?
Transfer if answer is yes.

[inv] [znd) (£ Is the content of the display register
positive? Transfer if the answer is no.

[2nd| [FQ Is the content of the display register
exactly zero? Transfer if the answer
is yes.

[INv] [2nd] BT Is the content of the display register
zero? Transfer if the answer is no.

These branching instructions do not affect pending
operations, hence they can appear anywhere desired in
the program, except between multilocation operands
such as [rct] 03,

90

The EE@ and EIA branching instructions require a bit
more explanation. You will note that an [[EJ instruction
tests for an error condition, that would cause a flashing
display in the calculate mode. Such an error will not halt
execution of a program unless programmed to do so by
the [EQ instruction. The display will flash after the
program halts unless [CE] or [CIR] were executed in the
program before it halted. Using [CE] will stop a flashing
display without affecting the displayed number.

The instruction refers to the five program flags that
are indicators which can be set (turned on, raised, set

to 1) or reset (turned off, lowered, reset to zero) by
commands in the program code or directly from the
keyboard. Manipulation of these flags is discussed in the
following subsection.

You may test your understanding of the branching
instructions by studying the following examples. Each
example is a segment of code whose effect is given
under explanation.

Example:

LOC |CODE| KEY

000 22 |W
70 | *ifer
01 |1
00 |0
3|3

DRE SR a1 LT

*‘Denotes 2nd function key

Explanation. If no error condition is present transfer is
made to location 103; otherwise the program executes
the next instruction (HLT).

9

Example:

LOC |CODE| KEY
000 | 60 | “iffig
01 |1
0 |0
1
1

01
01
0s 132 |sin

*Denotes 2nd function key

Explanation. If flag 1 is set, transfer is made to location
011, otherwise the program continues by taking the sin of
the display-register contents.

Example:

LOC [CODE| KEY LOC |CODE| KEY

ooo 145 I *IBL 010 129" | *xl
1 |A 46 | *LBL
90 | ‘ifzro LTE R
LT (v J
55 |= 46 | "LBL

005 42 | STO 015 29 | ™x!
32 |sin 42 | STO
9 |= 00 |0
20 | "k 01 |1
41 | GTO 81 | HLT

‘Denotes 2nd lunction key

Explanation. This is an entire program for computing

y = sin x/x. The test (x = 0?) causes the execution to
bypass much of the calculation if x = 0, arriving at label 1°
(location 012). If x # 0, then first x/sin x is formed. (Refer
back to the chapter on memory registers for the dummy

92

use of the [sT0] instruction.) Then we form (sin x)/x and
skip over the 1 (following label 1) to store the answer
in Ra1 and halt.

Example:

LOC |CODE| KEY

000 80 *if pos
35 T
94 | +-
46 | "LBL
85 |+

005 30 \x

“Denotes 2nd function key

Explanation. If the display-register content is positive,
the program skips over the change-sign instruction and
forms the square root. In the other event, the absolute
value of the negative quantity is formed, then the square
root is taken.

From the basic branching instructions you can synthesize
other branching instructions as shown in the table below.

Transfer Instruction
When: Sequence

[(]al=]b[1][2d O

(] a [=] b [[inv] [2na] EFQ
[J b (=] a (O] [n] [znd] (EH
[((Ja[=]1b [1] [2nd] O3

() a (=] b (3] [iNv] [2ed] (EH
[C]b[=]a [O0] [2nd] EE3
Example: Suppose you wish to determine if the display-
register content, x, is less in magnitude than the quantity
e stored in Ris. If that is the case, you wish to recall Ro

and halt execution; otherwise you wish to add x to Re1 and
go to location 101. This could be accomplished as follows:

93

LOC [CODE| KEY
oo | g5 [X Begin formation of quantity for
testing. [X] stores x into internal
8 | (processing register for safekeeping.
40 ¥2 E
0 | vk orms Ix|.
T o=
9051 43 | RCL
0|1 (x| — €).
09 |9
4 1)
22 | INV
010 [80 | *ifpos Transfer_on |x] < e.
to point labeled HLT
81 | HT flop)
01 |1 Overwrite x| — e with 1.
8 | = } Complete pending multiply of x:
44 | SUM XxX1=x
LA IR) x added to Ro:
01 |
41 [G0 |)
sk
» Transfe
% 10 ra r
020 o1 1 |
46 | “LBL |)
81 | HLT
A Desired action when [x| < e.
00 |0
025 01 ‘1
g1 | HLT |

‘Denotes 2nd function key

94

These examples were not chosen for their simplicity, so
don’t be discouraged if you have to study them in order
to understand them. They are very realistic in the way
branching instructions are used in actual programs, so as
you master these examples you are learning not just what
these instructions do, but also how they are used. One
sure way to develop your competence in this areais
through practice and actual use of these features to
accomplish desired objectives in real programs.

SETTING AND RESETTING PROGRAM FLAGS

The five program flags are initially set to zero when the
calculator is first turned on. They may each be set

(or reset) from the keyboard or as the result of the
appropriate instructions executed during the running of
aprogram. Whether from the keyboard or in a program
instruction sequence, the flags are set by the command
[2nd] EX | followed by the single-digit ([0]through[4])
identification number of the flag affected. They are reset
by means of the inverse instruction [iNv] [2nd] B[]
followed by the identification number,

There are a number of uses of the program flags; three of
them are the following:

1) Controlling program options from the keyboard prior
to execution.

2) Effecting a delayed branch based upon a test more
conveniently made earlier.

3) Keeping track of execution history —which path
through the program has led to the present point?

95

To illustrate the first of these uses, assume that you wish
to run a program which normally prints out (with the
accessory printing unit) four or five different quantities.
However, at times some of those quantities are of little
interest, and you would prefer to shorten the run time by
computing and printing only one of them. This could be
done by placing the appropriate HIl¥ instructions in

the program code. If you wanted only the main output, you
might set the appropriate flag; whereas if you desired all
of the answers, you would have the flag reset. Or perhaps
you would desire more flexibility and set flag 0 to compute
and print variable xo, set flag 1 to compute and print
variable x1, etc. That way if you wanted to see x», xs, and

X4 you would set flags 1, 3, and 4 just prior to execution.

To illustrate the second use, suppose that you have
reached a certain point in the code to solve a problem and
what is to be done subsequently depends on whether the
display-register contents are positive. If the results are
positive, you wish to execute a sequence of fifteen
instructions (which we will abbreviate [S15]) and then

go to location 219. If the results are not positive you wish
to execute the same set of fifteen instructions then not
go to location 219 but rather continue without a transfer.
Thus, the point of the branching is fifteen steps beyond
the point of the desired test. This problem is conveniently
handled using the program flags as the following
sequence demonstrates:

96

LOC [CODE| KEY LOC |CODE| KEY
ooo | 80 | “if pos 50 | "stfig
85 | + kAl L8 L)
22 | INV 46 | ‘LBL
50 | “stfig 78| 5]
00 |0 [S15]
0B AT IEGTO. 60 | “ifflg
721 Ml 0|0
46 ["Bl ©]1)1939° 1028 9
BhL| ik 01 {1
09 |9
etc.

*‘Denotes 2nd function key

The third use gives you a means of “remembering” in
the program execution whether you have arrived at a
given crucial point by one path (path A) or another (path
B). What you wish to do at this point depends on which
path your program has taken. You recall that the program
counter only knows where it is and has no recollection as
to how it came there. Yet such recollective ability is
sometimes needed, and the program flags do this
admirably. One simply places a set-flag instruction in one
path, and a reset-flag instruction in the other; and the
execution history is recovered through an if-flag
instruction wherever desired.

Finally, the EEN instruction resets all five flags as
well as clears the subroutine return- pointer registers and
positions the program counter to the top of the program
memory (000).

97

DECREMENT AND SKIP ON ZERO (DSZ)

A powerful instruction, especially useful in programming
iterative routines, is the decrement-and-skip-on-zero
command, (2nd] [0 . Itis really several instructions in
one. At this point, we assume that Roo contains an
integer. (If this is not the case, the effect is as though Roo
contains the next larger integer.) The effect of the DSZ

is the following:

1) First decrement the magnitude of the quantity stored
in Roo by 1.

2) If the resulting content of Roo is zero, do not transfer
to the specified address or label, but skip or fall
through to the next instruction.

3) If the resulting content of Roo is not zero, transfer to
the specified location or label.

The DSZ instruction also has its inverse, obtained by the
sequence [INV] [2nd] [I8 . It functions in the same way
except for reversing the test: If the value is not zero the
transfer is omitted; the transfer is made only if the value
is zero.

If the DSZ function and polar/rectangular conversion are
both used in the same program, it will be necessary to
temporarily store the contents of Roo in another memory
register, perform the polar/rectangular conversion, and
return the proper data for the DSZ function to Roo.

98

To illustrate the use of the DSZ instruction, consider the
following simple examples.

Example: Using the DSZ instruction, compute the sum
of all integers 1 through N. (Enter the value of N, clear
memories, then press [A].)

Solution:

LOC |CODE| KEY LOC [CODE| KEY

000 | 46 | "LBL 01a 44 | SUM
1 [A 00 |0
42 | STO (1 8
00 |0 58 | ‘dsz
00 |0 44 | SUM

00s 46 -LBL 015 43 HCL
44 | SUM 00 |0
43 | RCL 010k
00 |0 81 | HLT
00 |0

*Denctes 2nd function key

99

Example: Designaprogram to compute the following
sum by merely entering the number N of terms to
be summed:

N
y=>3In X
K1

Solution: Using the DSZ, the following straightforward
solution results.

LOC |CODE| KEY LOC [CODE| KEY LOC |CODE| KEY
oo | 46 | "LBL 46 | "LBL 58 | “dsz
1 |A o0 | 85 | + a1
42 | STO 43 | RCL LI 7 b L
00 0 |0 00 |0
00 0o |0 01 | 1
008 000 23 | Inx 81 | HLT
42 | STO 015 | 44 | SUM
00 |0 00 |0
01 |1 0|1

‘Denotes 2nd function key

Like the other transfer instructions, the destination used
in a DSZ instruction can be a label or a three-digit
absolute address. Also, the DSZ performs the test on the
value in Roo without recalling it from memory. Thus,
pending operations are completely unaffected.

100

XI. SUBROUTINES

Subroutines give you the capability to define a
subprocess or function by a sequence of code, and then
to invoke that code almost as though it were a keyboard
function simply by “calling" it (either by its name, that is
its label, or by its starting address in program memory).
Furthermore, the subprocess so defined may be called
more than once from anywhere in the program and, upon
completion of its purpose, control will pass back to the
main (or ““calling”) program at the next instruction past
the point of the call.

Such subprocesses which are invoked and then pass
control back to the calling sequence of code are known
as subroutines. In the SR-52, subroutines called by the
main program may themselves call subroutines which
return control to them just as though the first level of
subroutine were a main routine. Finally, upon invoking
all required second-level subroutines and completing
their assigned tasks, the first-level subroutines will pass
control back to the main program. This main program
can then call additional subroutines until the problem is
complete. Although this may sound complicated, the
coding is actually simplified by this approach.

CALLING A SUBROUTINE

There are three methods of calling a subroutine. One is
to use [SeR] followed by the label name of the subroutine
being called. Thus [sin] calls the subroutine labeled
[sin] : or [sBR] [2nd] [1] calls the subroutine labeled

[2nd] [1].

Example: Suppose you need to evaluate the following
polynomial for three different values of x and, then sum
the three results for a final answer.

10%5 — 7194+ 19x3 + 1ix2—6= ?

101

Solution: Assume X, is stored in Roy. Xz is stored in Roz;
and xa is stored in Roa. This problem is solved without
duplicating the code to evaluate the fifth-degree
polynomial by using a subroutine, which we will name
[2nd] [5]. The code for the subroutine might be defined
essentially as you write the polynomial:

LOC |CODE[KEY LOC [CODE| KEY
SHENL 40 (Bl 43 | RCL
8 |y 01 |1
53 (025 09 *]

42 | STO 45 |y
01 |1 03 |3
005 09 9 65 W
45 |y 0 |1
05 |5 030108 |9
65 | x 85 |+
L 43 | RCL
010 00 0 01 1
75 09 -0
43 | RCL 035 1 40 | kR
il 65 | x
0% |9 01 |1
o1s {45 |y o1 |1
04 |4 Vi
65 * 040 06 6
07 |7 54 |)
83} e 5 | “rin
020 m 1
01 |1
85 |+

‘Denotes 2nd function key

102

Notice in this subroutine code, that the equals key is not
used. An open parenthesis at the beginning and close
parenthesis at the end performs the necessary polynomial
evaluation without completing all pending operations in
the main routine, as would be done by an [=].

To obtain the final result, you do not want to write this
code sequence down three times, once using x1, once
using xz, and once using xa. The following main-program
code calls the subroutine to evaluate the polynomial for
each value of x and sums the results.

LOC |CODE| KEY LOC |CODE| KEY
E et | s 51 | SBR
1]A T8RO
43 | RCL 85 |+
00 |0 43 | RCL
01 |1 o83 1002]i0
995 | G12])SBR 03 |3
78041175 51 | SBR
85 | + 78 | "%
43 | RCL 95
00 |0 e T bR
060 02 2

‘Denotes 2nd function key

In this main program, the subroutine is called by the
sequence [5], where [2nd] [5] is the label

for the subroutine. In the subroutine, the last instruction
EMN returns control to the calling program at the point of
the call. The foregoing example could also have been
solved with a DSZ instruction in combination with

indirect addressing, an advanced technique discussed
in a later section.

103

Example: Construct a main program to compute an
expression y1** + (In y3) (y« + &), where each of the
quantities y1 through ys is sufficiently complicated that its
computation requires a subprogram.

Solution:
LOC |CODE| KEY LOC |CODE| KEY
ooo | 46 |*LBL 65 |x
11 [A 53 |[(
51 | SBR 51 |SBR
BrESEE 7 i
6 |y o5 85 |4
oos | 51 |[SBR 51 | SBR
8 |2 fo] o
8 |+ 2 |INV
51 | SBR 23 | Inx
89 |*3 020 |54 |)
010 23 | Inx 95 ==
81 | HLT

*Denotes 2nd function key

This solution uses the subroutines labeled [2nd] [1]
through [2nd] [5] just as if would use the quantities y:
through ys themselves. In other words, the main routine
is programmed as one would normally write the algebra.
Everywhere that [2nd] [3] appears, the necessary
subroutine provides the actual value of ys to the main
routine.

One of the advantages of the depth of the internal
processing registers of the SR-52 is that even tri-level
program structures can be supported without practical
danger of having too few registers to hold all pending
operations.

104

Itis irrelevant where the subroutine is stored relative to
the location of the calling program. In fact, except for the
obscurity of program structure which results, a
subroutine can actually be a portion of the calling
routine. Taking this approach to the extreme, a program
segment can actually call itself as a subroutine! But you
should avoid even thinking about such recursive
structures for now.

The second method for calling subroutines pertains only
to subroutines labeled [A] through [E] and [2nd) Il
through [2nd] l@l . Subroutines with these labels may be
called by just mentioning their names. That is, the
instruction can be omitted.

Example: Constructa main program which computes
a + b* by calling subroutines A, B, and C.

LOC [CODE| KEY
onoit g B0

1874 &

1 |A

85 ol

12 |B
005 45 y\

13 |C

g5 | =

81 | HLT

*Denotes 2nd lunction key

The third method even enables you to call unlabeled
sequences of code as subroutines. To do this, use the
subroutine followed by a three-digit address of the first
program location in the desired subroutine. Thus
007 calls the subroutine beginning at location 007.

105

LABELING A SUBROUTINE

You have just seen that a subroutine need not be labeled
(unless you also desire to invoke it directly from the
keyboard using the user-defined keys). Itisa
recommended procedure, however, because it adds to
the clarity of the program code — particularly if the labels
are chosen well and the program documentation records
the meanings of each label. In addition, by labeling
subroutines you can write the code which calls the
subroutines before you know where those subroutines
will be stored. This also means that adding or deleting
instructions after the program is stored will not require
changing the location address of the subroutine calling
instructions. The rules for labeling subroutines are
identical in every respect to the rules for labeling any
program segment.

AVOID USING [=] IN SUBROUTINES

One should use [=] (equals instruction) only with great
discretion in subroutines, and preferably not at all. The
reason is that the equals instruction completes all pending
operations. Some of these pending operations may be
created in the calling routine; so that an equals instruction
in the subroutine would complete these operations
improperly. As an illustration, in the previous example,

we easily created a program to compute a + b“ with calls
to subroutines A, B, and C. We did not bother to define
the subroutines in the example. Now imagine that the
code for subroutine B contains an equals instruction.
Specifically, suppose that it has one such instruction just
before the return instruction. The result would be to
complete the pending addition with a; so that we would
have (a + b) at that point. Whatever then occurred in
subroutine C, would produce the wrong answer. [If
subroutine C contained no equals instructions, we would
in fact obtain (a + b)* as the final result of the calculation.]

106

Avoiding the equals instruction in such cases should
impose no hardship, for you learned in Section Il that
enclosing an expression in parentheses is sufficient to
evaluate it. Accordingly, well written subroutines will
often begin with a [(7] and end with a [] just before the
return instruction.

Whenever the subroutine requires repeated access to x
(the display register contents at the time of the call), the
subroutine may include a store instruction prior to
performing arithmetic. If x is only needed to begin the
subroutine computation, adummy memory operation is
often convenient. This last situation often leads to
subroutines beginning with sequences, such as:

THE RETURN INSTRUCTION

The last instruction in a subroutine, the one which returns
control to the calling program is always a return
instruction . We have already described what occurs
when a return instruction is encountered: A transfer is
effected to the first instruction after the point of the call

in the calling program.

There are only two subroutine return-pointer registers.
The first register holds the address for return to a main
routine when a first-level subroutine is called. The second
register holds the address to which a second-level
subroutine should return when called by a first-level
subroutine. If a third-level subroutine is called by a
second-level subroutine, when Il is encountered in the
third-level subroutine, control will be passed back to the
first level subroutine (not to the second). The section on
Indirect Instructions shows you how to extend beyond
tri-level programs.

107

Example: To see how this works consider the following
code:

LOC [CODE| KEY LOC |CODE| KEY
000 | 46 | "LBL 46 | "LBL
AN 131C
12| B 03 (3
01] 1 42 | ST0
42 | STO 20 L0050
oI 000 03 |3
01 | 1 5 | “rn
81 | HLT
46 | "LBL
12 | B
a10 13
L
42 | ST0
00 |0
02 |2
015 | 56 | *rn

‘Denotes 2nd function key

These instructions will produce the following when
executed by pressing [(A’], the main routine.

1) Subroutine B is called at location 002.
2) Subroutine B calls C at location 010.
3) Subroutine C stores 3 in Roa.

4) Subroutine C executes a return instruction, passing
control back to B (first-level subroutine) at the point
just beyond where B called C.

5) Subroutine B stores 2 into Roz.

108

6) Subroutine B executes a return instruction, passing
control back to the main routine just past the
point-of-call.

7) The main routine stores 1 into Ro1 and halts.

If you execute this code and then recall the contents of
Ror, Roz, and Ros, you will find that everything worked as
it was supposed to.

Now, leaving routine A and subroutine B defined as
before, change the rest of the code by adding another
subroutine level:

LOC |CODE| KEY LOC |CODE| KEY
46 | "LBL 46 | *LBL
13 C 025 14 D
14 1D 04 | 4
03 | 3 42 | STO

020 | @24 810 00 |0
00 |0 04 | 4
03 |3 LA S
56 | ‘rn

"Denaotes 2nd function key

If you execute this code and then recall the register
contents (clearing the registers from the last example
first) you will find that the sequence 3 [sT0] 03 never took
place. This is an example of what we discussed before.
When C called D, there was no place left to store a return
address for D to use for its return. The fourth level of
routine nesting exceeded the three levels automatically
available on the SR-52. Consequently, when the return
instruction was executed in D, the point of return was
back in subroutine B just as before; not to the 3 [570] 03
in subroutine C.

109

The following rule makes it easy to use subroutines as
main routines. If a return instruction is encountered when
there is in fact no calling program awaiting return of
control, then a halt occurs, control passes back to the
keyboard, and the program counter resides at the first
location following the return instruction.

Occasionally programs are designed so that completion
of execution may occur inside a first-level (or even
second-level) subroutine. In other words, the answer to
the problem (or perhaps detection of an error in the
problem) has been obtained without returning control to
the calling routine(s). In such situations return-of-control
remains pending, the subroutine return-pointer registers
are left with the pointers back to the unsatisfied return
point(s) in the calling routine(s). Unless the calculator is
turned off, the very next time a return instruction is
encountered in a new problem any pending return left
over from the last problem will be satisfied. This would
rarely be the intended effect, however; and an improper
execution would result. To prevent such left-over return
pointers from ruining proper execution of the next
problem, the reset instruction ([2nd] [El) should be used
to reset the return-pointer registers. This may be done
manually, but it is preferable, when possible, to include
the reset command at the proper point in the program
code, with a halt instruction at location 000.

SUBROUTINE PRACTICE PROBLEMS

We conclude this section with two examples of subroutine
usage which for different reasons may prove instructive
and useful.

Example: Construct a subroutine to take the integer part
of x and place the fractional part in Ris. It should be so
designed that it may be used without disturbing pending
operations in the calling routine.

10

Solution: We will construct a solution for x = 0 and let
you work out the more general case as an exercise.

LOC [CODE| KEY LOC |CODE| KEY

voo | 46 | "LBL SISETERT | S
alE 00 |0
] a2 | EE
42 | 810 22 | INV
0|1 44 | sum

oos Og g 015 01 T
o= 0|9
93 . 5 | “rn
05 | 5
54 |)

‘Denotes 2nd function key

You will notice that this subroutine does leave the display
in scientific fix 0 format.

Example: Write a program to solve for F(x) = 0, where
F(x) is a subroutine defined function provided by the user.

Solution: We may use Newton's method of solution. (This
well-known method will not necessarily converge for all
problems.) This method performs the iteration

X0 = %, — F(x,)/F'(x,), where F'(x,) is an estimate of the
derivative of F at x,,.. The derivative will be estimated by
finite differences:

F'(x,) = 1_:_(_"“ b 512_3':(’.(1.' 8)

Preserving all data registers but Ris and R1s for you to use
in the definition of F(x), we produce the following main
routine which you should find not only instructive as to
the use of subroutines but useful in your problem solving
as well.

m

LOC |CODE| KEY LOC {CODE| KEY LOC |CODE| KEY
000] 46 | "LBL 92 | EE Do | EE
A 06 | 6 06 | 6
42 | ST0 T o O 84 | +-
01 | 1 54 |) 54)
08 | 8 5 1) 0601 44 | SUM
Ul e ol 150 E 01 | 1
46 | “LBL 75 09]9
2B k| g I 80 | “if pos
42 | STO 43 | RCL O
01| 1 (1FY o 085 | 94 | 4
SRR e B] 0|9 46 | *LBL
46 | “LBL 65 | x 85 | +
17 ’B' 040 53 (?5 rs
53] 4 0 5 43 | RCL
43 | RCL L ey o701 0] =
o glaelll Ll DealieEE 08| 8
9] 9 06| 6 9% | =
i e = 045 | O | +/~ 80 | “ifpos
55 | = 54 |) P
5| (e bl] 075 | 43 | RCL
LEC A GER 1515 0|1
43 | RCL 54|) 099
(11 PR G [81 | HLT
0|9 43 | RCL 46 | "LBL
BS | {3k il a0 | 15 HE
025 53| (M| 9
D151 i (s
Bl — Lk 2]

"Denotes 2nd function key

12

The instructions for using this program are as follows
(assume the foregoing code is on a magnetic card):

1) Load the program (side A) into program memory.
2) Press [GT0] [E] .
3) Gointo learn mode (press [LRN]).

4) Key in the definition of your function F(x) assuming x
is in the display register to begin with and F(x) must be
left in the display register at the end. You may not use
[=]in this subroutine, but all data registers except
Ris and Ris are available.

5) End your subroutine with a [fI8 instruction.
6) Press [LRN| to go into calculate mode.

7) Enter desired accuracy of x and press [a].
8) Enter guess of solution and press [B |.

9) Answer will appear within seconds or minutes,
depending upon accuracy desired, first guess, and
nature of F(x).

Because the main program only uses 79 steps, you may
use 145 steps (including the label and return) to define
F(x).

113

Using this example, suppose you wished to solve for x

such thatIn x

.2 x. You might define F(x) = .2 x

The subroutine at E could then look like this:

Loc |cooe| key | [LoC |CODE| KEY
26 | "LBL 65 | x
80 | 15 | E 93 |-
42 | S10 o0 | 02 | 2
00 [0 75 | —
o1 |1 43 | RCL
53 | 00 |0
o85 | 43 | RCL N E
00 [0 o5 | 23 | Inx
o1 |1 5 |)
56 |

‘Denotes 2nd function key

The answer to this problem is x

114

1.296.

In x.

XIl. INDIRECT INSTRUCTIONS

Every transfer instruction which specifies a location in
program memory or addressable register operation which
references data registers through the two-digit register
names has a counterpart instruction, the so-called
indirect form. These indirect instructions add such
flexibility in programming that new applications for them
will be continually found. They represent a sophisticated
programming tool which many SR-52 owners can use to
accomplish processing which they simply could not
otherwise accomplish.

First we will discuss the indirect instructions relating to
data register operations and then those which relate to
program transfer instructions.

INDIRECT DATA-REGISTER INSTRUCTIONS

There are seven basic data-register instructions: [T0].
Red, EE, SuM, . (NV] (UM, and [iNv] . They

all have one thing in common: In the instruction sequence
which uses them, a two-digit number (00 through 19)
must appear in the sequence just after each one to
designate the data register affected. The sequence

[RCL] 04 would recall the value in Ros.

An indirect instruction is formed by preceding the

effect of [2nd] [RcL] 047 This instruction will recall

the value not in data register 04 but rather the value in the
data register named by the contents of Ro.. For example
if the value stored in Ros were 11 then [[rcu 04
would recall the value stored in R

Whenever a value stored in a data register is used not just
as another number but as an address (in this case a data
register number, hence a data register address) it is

called a pointer. One says that the pointer “'points to' the
data register having as its address the value of the pointer.
In all indirect instructions, the content of the data register
directly designated in the instruction is used as a pointer.

115

In the above example [2nd] [RCL| 04 means: ""Use the
contents of Ros as a pointer to the data register whose
contents are to be recalled.” Similarly, [2nd] [[ST0] 15
would mean: “Use the contents of Ris as a pointer to the
data register into which to store the display-register
value."

The diagram below illustrates these concepts graphically,

Indirect
Instruction Register Contents
[2od] N (508 00 —— 00— 211.64— % ~Error
01 61077 8195+, (invalid
register
02 0 number)
03 219
[2nd) MM RCL) 04 —— 04— 11 ——
a 1 a
05 —BE7E]
06 0 points
(2nd] NN [REU 07 —— 07 —— 7 - to
7 isrecalled «————
from Roz 8 13 Rn
09 0
10 0 b
911.6 is recalled -—a— -11 «——911.6 <
from Rn 12 0 points
13 160 to
14 0 Ror
[2od) IO (570) 15— — 15— 1 ———1

(819.5in display) 16 0

17 0
18 0
19 0

116

This diagram shows the effect of [2nd] E[IN (RC 04 as

the path of events marked a: The result is to recall the
value R = 911.6. The effect of [2nd] IIW [STO] 15 is shown
as the path of events marked b: The result is to store
819.5 into Ra1, formerly containing 6 = 1023, Finally, the
result of [znd] I8 [RCU 07 in this example is marked c:
The pointer points back to data register 07 so that the
result is to recall the value Roz = 7.

Itis implied that any pointer used as the consequence of
an indirect instruction must point to a realizable address.
Accordingly, the result of the [2nd] I [SUM 00 in the
example diagram would be an error —there is no data
register 211.64.

Now we will practice the use of these indirect instructions
in some example problems:

Example: You would like to enter a varying number of
data items, up to a total of 19, and have them stored
successively in data registers Ro1, Roz, etc., with the total
number of items entered, counted and stored in Roo.
Design a program to allow you to enter each item just by
pressing [A].

17

Solution: The indirect instructions make this an easy
problem. The program is given by:

LOC |CODE| KEY
00 46 1 LBL
1 [A

36 |["IND
42 |ST0
00 |0

oos | g0 |o
o1 |1
44 | SUM
00 |0
00

o110 % 'nn

‘Denotes 2nd function key

To run the program, you initialize 1 00. The program
ends on a return instruction, rather than a halt, because
itis just the sort of thing one might like to have as a
subroutine. Now try to solve the same problem without
using an indirect instruction. (No solution supplied!)

Example: Five quantities, Xy, X2, Xa, X4, and Xs have
been computed and stored (in order) in data registers
Ror through Ros. Five other quantities Y) through Ys have
been similarly stored in Res through Ris. You wish to
create a short segment of code in your program which
will compute the average value of the five quantities

Zy=X /Yy (k=1, 2, ...5).

18

Solution:

025

)

“Denotes 2nd function key

19

LOC |CODE| KEY | |LOC |CODE| KEY
000 | 05 |5 44 | SUM
42 | STO 01 |1
00 |0 01 |1
0 |0 01 |1

01 _]1 030 | 22 | INV
Ml R 44 | SUM
42 | ST10 01 |1
01 |1 09 |9
09 |9 58 | *dsz
00 |0 035 | g7 | *1'
1o p L STO 53 | {
01 |1 43 | RCL
01 |1 01 {1
46 | ‘LBl Disebid
87 | *1 0s0 | 55 | =
015 | 53 | (05 |5
36 | “IND 54 |)
43 | ROL
00 |0
00 | 0
020 55 i
36 | ‘IND
43 | RCL
01 | 1
09 |9
54

This solution takes only 43 steps. Perhaps you coded it
differently, but if your solution is concise you doubtless
used an indirect instruction. Now try doing the problem
without the indirect expression and note the economy
achieved by the indirect. Incidentally, this example also
points up another design issue entirely: the value of
making intelligent memory assignments.

The next example illustrates not only this programming
design consideration, but it also demonstrates the
desirable method of top-down design.

Example: Design a program to build a ten-window
histogram, given that the data items are in the range

a < x = b, where aand b are inputs. We desire that the
program should store the results for the number of counts
in each bin in data registers 01 through 10. The data will
be entered one at a time through [E |. Thisis along
problem, but it illustrates the top-down approach which
makes things easy.

120

Solution: First write the main routine, assigning Ris to
contain the bin number into which the current value of
data contributes a count:

Main Routine:

LOC [CODE| KEY
ooo | 46 | *LBL
155.E
13 | C) Find BIN #
42 | STO
() b
s | 09 |9) Store that # in Ris
0|1
36 | “IND
44 | SuM
R } Increment count in that bin (register)
a10 0|9 by 1
81 | HLT

‘Denates 2nd function key

The next step is to define subroutine C which finds the
proper bin number.

The proper bin number for the value x is given by the
equation

n=1+ INT [(x —a)/(b—a)x10],
where INT (y) = "integer part of y"'. Allocating Ris and R17

to aand b respectively, one may write the following
without difficulty.

121

Bin Number Subroutine:

‘Denotes 2nd function key

122

LOC |CODE| Ky | | LocC [coDE] Key
46 | *LBL |-
o 43 | ReL
53 | (030 | o1 |1
o1s | 53 | 08 |8
53 | (5 |)
42 |10 65 | x
fiole 01| 1
43 |RCL |]°s o0 |0
oz0 |01 |1 54 |)
08 |8 14 [D
54 |) 85 |+
55 |+ 0|1
53 | ¢ os0 | 54 |)
025 | 43 | RCL 5 | *rn
0|1
07 |7

By now you should be used to the dummy store instruction
used to provide a first-argument following the opening

of a left parenthesis. But what was done about the INT
function? We simply gave it the name ""D"' and deferred its
coding until now. The value of the argument of the integer
function is greater than zero, so we may use the integer
subroutine given as an example in the |last section.

Fixing up the resulting display format and discarding
unnecessary features from the last section in the following
version produces the following code.

Integer-Value Subroutine:

LOC [CODE| KEY LOC |CODE| KEY
| B i) o b
14 | D 00 (0
53 | 52 | EE

048 e RS T 22 | INV
T8Vl 92S1] EE
a2, ST NI S TV
05 |5 57 | *fix
54 |) 56 | 'rn

‘Denotes 2nd function key

123

There are only two more details to complete and the
problem is solved: We should make it convenient to

enter the values of a and b and to initialize Ro: through Rio
to zero. Because itis naturaltoenteraat [al and b

at [B] we write:

LOC |CODE| KEY LOC |CODE| KEY
46 | "LBL | [°%° | 46 | "LBL
1A 12 | B

080 | 47 | "CMs 42 | STO
42 | ST0 01 |1
01 | 1 07 | 7
08 | 8 L0 | AB1S JHLT
81 | HLT

‘Denotes 2nd function key

and the problem is solved. Futhermore, the top-down
method allowed you to think of one thing at a time rather
than immediately being embroiled in details.

Note that it was necessary to write the subroutines so as
not to disrupt any pending operations: The required
effect of the subroutines was to replace x in the display
register with f(x) without affecting anything pending. But
you should always write your subroutines that way
anyway; in that manner your programs will be “safe.”

124

This problem illustrates much in addition to the use of the

[2nd) [T (SUM used to tally the counts in the ten
“pin-registers.” We hope you enjoyed working through it.

Next, we cite a fairly short and simple example to show
the rapid increase in the complexity of the processing
logic which happens when one combines indirect
instructions in an instruction sequence.

Example: Consider the code sequence given by:

LOC |CODE| KEY
ooo % . lND
43 | RCL
0|0
01 |1
42 | ST0
005 | 01 | 1
09 |9
36 | "IND
43 | RCL
o1 |1
010 (B g

*Denotes 2nd function key

125

What is the effect of this short instruction sequence?
Imagine that the number 15 is stored in Re1, that the
number 4 is stored in Ris and that the number

4.818 x 10 '%is stored in Ros. The first indirect recall
instruction automatically establishes that the pointer in
Ro points to Ris and recalls its content, the integer 4.
This value is placed in Ris. The next indirect recall
instruction then uses the pointer in Ris to recall the
contents of Ros, namely 4.818 x 10 '%. The overall effect
of this sequence is to produce a second-level indirect
recall. That is, the effect is to find the pointer in the
register first named in the sequence (Ro1), use this pointer
to find the location of the next pointer (Ris), and finally
use the pointer found there to point to and bring the
actual number recalled to the display (4.818 < 10 '°from
Roa). It is invalid to write the sequence:

[2nd] ICTH
(2nd] ICTH
[Ret] 01
However, the example shows that you can concisely

synthesize instruction sequences which have that
intended effect.

126

INDIRECTPROGRAM-TRANSFERINSTRUCTIONS

You have seen how that preceding normal memory
operation with [2nd| [l turns that instruction into an
indirect instruction. The two-digit number specified in the
indirect instruction is the register containing not the
needed value itself, but a pointer to where that number

is to be found.

In a similar manner, all of the following instructions may
be converted to the indirect form:

Gro) fse8)

(znd] MY (i) [zd] [0 n
znd] EED (i) (znd] (R
(z0d] D (] (4] G

When any of these instructions are preceded by [2nd] I .
the absolute address to which the transfer shouid be
made is to be found in the data register designated by the
two-digit number in the instruction sequence.

Example: Suppose memory register Ri: contains the
integer value 168: Then the sequence [2nd] [[IN [GTO| 14
would cause unconditional transfer to location 168.

Example: Suppose memory register Roy contains the
value 7: Then the sequence [2nd| [[IN] [2nd] Y 3 01
would cause transfer to location 007 if flag 3 is not set.

Example: Let memory register Rio contain the quantity
21: Then the sequence [2nd] [[2nd] T8 10 would
cause a decrement of Roo, transfer to location 021 if the
resultis non-zero, and a skip (of the transfer) to the next
instruction if the result is zero.

Example: The sequence [2nd] TN [SBR] 08 would call the
subroutine beginning at the location pointed to by the
content of Ros.

127

There are two things to note about all the indirect transfer
instructions. They all eventually reach the destination
address through the absolute location (000 through 223),
and never by means of a label. One cannot store a label

as such in the data registers; but one can store a pointer
to the destination program memory location. A number
stored in a data register for indirect addressing need not
be entered with leading zeros and is the only exception to
the three-digit requirement for specifying program
locations. The indirect transfer specification requires one
less digit in the sequence than the direct form. This results
from the fact that two digits are required in the instruction
sequence to specify the data register rather than the three
digits necessary to specify the absolute transfer address.

Note further that all indirect instructions whose direct
counterparts can be executed from the keyboard may
also be so executed.

We conclude this section with two practical examples of
the use of indirect transfer instructions.

Example: Suppose you are designing a program from
the top down as described before and discover that at
several places you would like to define and call a certain
subroutine. (We will name this subroutine D.)
Unfortunately, your problem is sufficiently “'deep"’ that
subroutine D would be a third-level subroutine (that is, a
fourth level routine). You know that the SR-52 does not
keep track of more than two return addresses. What

do you do?

Solution: The approach is easy. You call subroutine D

in the usual way with 0] . However, instead of
ending subroutine D with a [2nd] Il statement, you end
it with [2nd] IE [T0] 19. Whereas the SR-52 provides only
two dedicated registers for subroutine pointers, you
simply appropriate register Ris for this purpose. Oh yes,
there is one thing more: Unlike the automatic processing
of the first two return pointers, your code must store the
return address into Ris at convenient points prior to the
actual subroutine calls. The result of such an approach is
graphically shown in the following figure.

128

“LBL 145 | *LBL

ERE -
: =

g
=
l..l.ég
(=e)
3

ks eebEN

E
(=)

1
7
120 | SBR 163 |6
121 |C ST
122

215 | *IND
216 | GTO
210
218 |9

bl
2

3rd-Level
Subroutine

LI T T B
. ® = 8 * 8 8 8 8
.
-

144

g

2
1st-Level 182 |0
Subroutine 183 |10

ST

185 |1
186 9

1:'0---....-..-.-_’5_

098

o

Main . .
Program . .
198 | SBR
199 | D
20 | -

207 | *rn

2nd-Level
Subroutine

129

Example: A quantity K is stored in Bor. You would like to
form a case statement with this quantity: That is, “go to
Address K—Address 1if K= 1, Address 2if K = 2,
Address 3 if K = 3, or Address 4 if K = 4." How may this
be done?

Solution: Now consider a specific case where Address
= 162, Address 2 = 064, Address 3 = 111, and Address

4= 201.
Then you could write the following code
LOC |CODE| KEY LOC |CODE| KEY LOC |CODE| KEY
000 1L 53 A 00 |0 Todlcs
43 | RCL 07 | 7 03 |3
00 |0 LA W 5. [
07| i 02 |2 99 | *ifzro
TA 5 |) 030 | 01 | 1
905 f=01 4 99 | “ifzio 01 |1
54 |) 00 |0 01 |1
9915} il zro (| u]:020% 206 | 6 41 | GTO
011 04 | 4 0212
06 | 6 53 | (o3s | 00 | O
010 | 022 43 | RCL T
53 | (00 |0
43 | RCL o8 | 07 | 7

“Denotes 2nd function key

130

Although this may be a solution it is not as concise as
one available to you using indirect branching. Instead of
the above code, you could store the numbers 162 in Ris,
64 in R17, 111 in Rig, and 201 in Rys. Then the following
code performs the case-statement branching:

LOC |CODE| KEY LOC |CODE| KEY
o T 42 | ST0

43 | RCL 0o |1

00 |0 o0 |00 |0

Ot | 36 | “IND

85 |+ 4 | GTO
005 | 01 |1 o1 |1

05 |5 0 |0

54 1)

‘Denotes 2nd function key

Case statments represent a useful addition to your
programming repertoire. With them you can make
“software switches,"” whereby you can define and code
several processing options in a single program and then
select which one to execute by entering the option
number K, desired. A case statement at the appropriate
point selects the proper code sequence for you.

131

XIIl. PRINTER CONTROL

The optional desk printing unit available for the SR-52
allows you to perform a number of different printing
functions. You can:

1)

2)

3)

4)

5)

6)

List your program code in its entirety with a single
command,

Print any results obtained while using the SR-52 in the
calculate mode;

Insert print instructions in your program to print one
or more results without halting program execution;

Perform paper spacing either from the keyboard or
under program control in order to set off sets of results;

Place the printer in the TRACE mode to automatically
keep a record of all calculations performed both
manually and in the run mode. This trace includes a
record of the operations performed as well as

the results.

Leave your desk without having to lock your SR-52
away. The printing unit provides security as well as
power for your calculator.

132

LISTING A PROGRAM

To lista program (from the point currently indicated by
the program counter) simply press [2nd| Tl while in

the calculate mode. The program will be listed from that
point and then automatically halt the listing after the last
instruction at location 223 has been printed. The listing
may also be halted manually at any time by pressing [HLT].
For a complete program listing, the initial position of the
program counter may conveniently be positioned by
pressing [2nd| [. The list instruction is of course
executed in the calculate mode.

The actual program listing obtained is in the following
format: The first three digits show the location in program
memory and the alphanumeric symbols to the right show
the instruction stored there.

The chief benefits of performing a program listing are:

1) To verify that the instructions keyed in, correctly match
those intended, as written on the coding form.

2) To provide quick documentation for a program either
hastily constructed without benefit of careful
documentation or else changed since that time.

3) To provide a means of later verifying that results
obtained in running a program were based on a
correct problem formulation.

133

PRINTING DATA

From the keyboard, the contents of the display register
may be printed at any time by pressing [2nd] .The
same instruction encountered in the program code will
cause that action to take place in the run mode. To
illustrate this, consider the following program example.

Example:

LOC |CODE| KEY LOC [CODE| KEY

st B D 5 1)
T A 98 | "prt
83 | 85 [k
43 | RCL 43 | RCL
00 |0 A (B8)

i) bt e 65 0|0
B ot 9 | “prt
43 | RCL B[=
00 |0 98 | “prt
02]2 He 81 | HLT

a10 98 *Dﬂ

“Denotes 2nd function key

134

In this example the following quantities are consecutively
printed before the program ends:

1) *Roee
2) (*Ro1/*Roz2)
3) *Roo

4) *Roo + (*Ro1/*Ro2).

To see all those quantities without a printer would require
program halts and manual resumptions.

PAPER ADVANCEMENT

The paper may be advanced in either mode by the
command (or instruction) [2nd] [0 . This feature is
particularly useful for separating data. For example, you
might be interested in making up a depreciation schedule
with your SR-52. For this purpose you might group the
data: giving year, book value, depreciated amount,
depreciation to date, and reserve as a set of five
consecutive values set off from other years' data by

a space.

135

PROGRAMMING IMPLICATIONS

You have seen that the printer can print data without
halting programming execution. This gives you all the
capabilities of a PAUSE instruction and more. Knowing
that you are going to run a program with a printer could
influence the way you design that program. In particular:

1) You may delete halts for observing several results;

2) You may print successive iterations of a repetitive
calculation to see whether the result is converging or
diverging and when the calculation may be halted
(rather than using predefined accuracy criteria and a
conditional transfer operation);

3) You may monitor where the program execution is
currently taking place through printing cues or
intermediate data. Timing information can also be
obtained this way so that you can find out which
portions of your program are requiring the most time.

TRACE OPERATION

The trace mode is the one print function which is
commanded from the printer rather than from the SR-52.
Itis particularly useful in tracing manual computations,
providing “"hard copy’ of the results, and in “debugging"”
programs. Additional details of operation are provided in
the instructions supplied with the printer.

RUNNING LONG PROGRAMS

The optional printer also serves as a security cradle. In
combination with the features already discussed, this
implies that you can use the SR-52 to run programs that
require a long execution time without being “tied down"
to your desk. The SR-52 will execute the program, the
printer will print all answers, and your SR-52 will be
secure even while you are absent.

136

XIV. A COMPLETE
SAMPLE PROGRAM

This basic program is designed to show the fundamental
steps in creating, programming and running your own
programs.

Define the Problem

Suppose that the monthly service charge on your
checking account is calculated as follows:

$0.10 per check for the first five

$0.09 per check for the next five

$0.08 per check for the next five

$0.07 per check for each check over fifteen
The problem is to construct a program that will compute

your monthly service charge for a given number (n)
of checks.

Looking at the situation carefully, you can see that there
are three conditions to test where n is the number
of checks.

1. Isn>50tr5—n=0D7?

2.1sn>100r10—n= 07

3.Isn>=150r 15—n=07?
Now the truth or falseness of these conditions will

determine the action to be taken. The possibilities are
summarized by the flow diagram in Figure 2.

Develop a Flow Diagram

The flow diagram in Figure 2 provides a full visual
representation of how the identified problem can be
solved within the functional capabilities of the calculator.
When first preparing a flow diagram, only the bare
essentials necessary for clarity should be included. The

137

simple format selected for Figure 2 is: circles for
identifying primary labels (or locations), rectangular
boxes to contain mathematical functions which logically
fit together, diamonds to show conditional transfer
instructions, and squares to show program termination.

Assume n is
in display

©

I 5+ [(n— 5) x .09]
|

IF =1
OSITIVE—RUE (0 = 15) HALT

FALSE (n = 15) @

1.35 + [(n — 15) x .07] .”.95 + [(n — 10) x .08] =|
1 1

HALT HALT

Figure 2. Sample Program Basic Flow Diagram

138

As indicated on the diagram, the number of checks (n) is
assumed to be in the display when starting the program.
Label A is identified to show that user-defined key A is to
be used to start the program.

The first operation to perform is to determine if the value
of nis five or smaller. By subtracting n from five, an
if-positive function makes the decision...if5 —n = 0.

If true, then n is five or less and the program transfers to
label 1'. Label 1' is the second function of the 1 key and
was chosen as a label because it is convenient to
remember. If the program operation reaches label 1°, the
value of n is five or less. Therefore, the service charge is
calculated by $0.10 x n and the program is stopped. If the
result of 5 — n is negative (n> 5), the false response of the
if-positive function continues with the main program and
ignores label 1'.

Now that n is known to be more than five, it must be
determined if n is ten or smaller. The second if-positive
function makes the decision...if 10 — n = 0. If true,
nisten or less and the program transfers to label 2. When
the program reaches label 2', the value of n is known to
be between five and ten. The cost of the first five checks is
afixed value...$0.10 x 5 = 50 cents. The cost of checks
six through ten is nine cents each...(n — 5) x $0.09.
Adding on the 50 cents (.5) completes the calculation and
the program is stopped. If the result of 10 — n is negative
(n = 10), the false response of the second if-positive
function continues with the main program and ignores
label 2'.

139

The value of n is now known to be greater than ten and it
must be determined if n is 15 or smaller. By subtracting

n from 15, a third if-positive function makes the decision
...if 15 — n = 0. If true, then n is 15 or less and the
program transfers to label 3'. When the program reaches
label 3’, n is known to be between 10 and 15. The cost of
the first 10 checks is fixed: ($0.10 x 5) + ($0.09 x 5)

95 cents. The cost of more than 10 checks is calculated by
(n — 10) < $0.08. Adding on the 95 cents (.95) completes
the calculation and the program is stopped. If the result
of 15 — nis negative (n > 15), the false response of the
third if-positive function continues with the main program
and ignores label 3'.

When it is known that n is greater than 15, the cost of the
first 15 checks becomes a fixed value: ($0.10 x 5) +
($0.09 x 5) + ($0.08 x 5) = $1.35. The cost of more than
15 checks is calculated by (n — 15) x $0.07 and after
adding on the $1.35, the program is stopped.

Convert Flow Diagram to Keystrokes

Before continuing with the actual program, some help
may be needed to translate the flow diagram into program
steps. Most programs have what may be referred to as a
main flow of program steps. The main flow in Figure 2 is
obvious by the column of instructions in a column under
label A. The convenience in identifying the main flow is
that all program steps for it may be written in order on the
coding form, with the location numbers in sequential
order. For example, the main flow of the program in

140

Figure 2 is written in locations 000 through 041 (Figure 3a
through 3h). The program steps for the labels (1', 2, 3'),
which may be called from the main flow program, are
then written on the coding form following the main flow
steps. Generally, the program steps for the labels are
written in the same order they are encountered on the
flow diagram. For example: locations 042 through 049
(Figure 3e)—label 1’, 050 through 065 (Figure 3f) — label
2', and 066 through 083 (Figure 3g) —label 3'. This does
not mean, however, that a label cannot be included in the
main flow of a program.

To correlate actual program steps with the flow diagram
in Figure 2, a program listing is shown in segments by
Figure 3a through 3h. Each item on the flow diagram is
keyed to the actual related program steps or locations.
Notice that some programs steps do not relate to the flow
diagram. These steps, sometimes referred to as
housekeeping steps, are necessary to control data and
program instructions. For example, Figure 3a shows that
locations 002, 003 and 004 were not represented on the
flow diagram. These three steps store the displayed
number (n) in memory register 19 (R19). It is now obvious
on the flow diagram that n needs to be available for use
several times during the program and that temporary
storage is required. Ris was chosen for use in the
program since small numbered memory registers are
frequently used with keyboard calculations. Each time the
value n is required in the program, you now could use
[R€] 19. However, in Figure 3a you see the operation

5 — n = isdirectly written as 5 — E =,

141

LOC

CODE

11

42

3|7 |e|z

01

0os

05

oo | —

75

15

95

010

87

LOC

CODE

01

00

75

10-n=

15

015

95

80

*if pos

88

*21

“Denotes 2nd function key

Figure 3. Program Code
142

Figure 3(a)

Figure 3(b)

LOC |CODE| KEY
01
05 |5
020 | 75 | — 15-n=
165 |E
9% |=
80 | “ifpos /
o AR T
Figure 3(c)
LOC |CODE| KEY
o2s [o1 [1)
93 -
03 |3
05 |5
8 |+
030 [53 [
19 |'E
itk | =
THE { | 1.35 + [(n - 15) x .07] =
05 |5
035 | 54 |)
65 | X%
93 -
00 |0
gl i
040 95 =
81 | HLT [— HALT
"Denotes 2nd function key Figure 3(d)

Figure 3. Program Code

143

LOC |CODE| KEY
46 | *LBL
STt
o3l

045 01]
65 | x
13k
9% | =
81 | HLT

LOC |CODE| KEY

050 | 46 | *LBL
88 | "2
93 | «
05| 5
85 | +

055 53 (
15 8|HE
75 | —
05115
4 1)

0860 65 *
03 | «
00| 0
09 |9
95 | =

085 | 81 | HLT

[e

J

*Denotes 2nd function key

Axn=

HALT

S5+ [(n-5)x.09] =

HALT

Figure 3. Program Code

144

Figure 3(g)

Figure 3(f)

L_OC CODE| KEY
46 | “LBL
8| 3 } @
93 ' 3
9|9
o070 05
85
e)
15 E
gt
T8 guhiled } | .95 + [(n — 10) x .08] =
0|0
54 1)
65 | x
93 | -
oBOD UU 0
08 | 8
9% | =
TP B e HALT
Figure 3(g)
LOC |CODE| KEY
46 | "LBL
085 15 E
43 | RCL
ERE
099
5 | "rin
*Denotes 2nd function key Figure 3(h)

Figure 3. Program Code

145

As described in Section IX, E is a user-defined key that
when used alone in a program, the program will transfer
to label E, execute instructions following label E, and
automatically return to the location following E (location
008) when a return instruction is encountered. Figure 3h
shows the program steps with label E which simply recalls
Ris to the display. This is just one of many techniques
which may be used to decrease the number of program
steps in a program.

In the flow diagram of Figure 2, the value of n must be
recalled to the display seven times. Since [Rci] 19
requires three program steps, the total steps used to
recall nis 7 x 3 = 21 steps. Now consider that label E
uses six locations (084 through 089) and each n in the
flow diagram is replaced by E on a one-for-one basis. The
total steps now required to recall n seven times is

6 + 7 = 13 steps, a saving of eight program locations.

Following the 5 — E =, program steps (locations 005
through 008 in Figure 3a) is the if-positive function
(location 009). If the result of 5 — E = is zero or positive,
the program transfer to label 1’ as identified in location
010. Remember that a conditional transfer function (such
as if-positive) must be immediately followed by a three-
digit location number or a label to which the program will
transfer if the result of the conditional transfer function is
true. A false result of the if-positive function causes the
program to skip location 010 and continue with location
011 shown in Figure 3.

In a nearly redundant fashion, the 10 —n = and 15 — n =
operations are shown by Figures 3b and 3c respectively.
Figure 3d shows the final operation in the main flow. ..
1.35 + (n — 15) x .07 =...and a halt instruction at location
041 stops program execution and displays the answer.
Notice in the program steps that the algebraic hierarchy
feature allows omission of the parentheses when

entering the problem.

Figures 3e, 3f and 3g show the program steps for the
calculations following labels 1', 2’ and 3’ respectively.
Since this program uses labels to identify all transfer

146

operations, it is not necessary to keep track of program
location numbers except to know which locations are
used or not used. Label 1' and following steps could be
moved to start with location 100 instead of location 042
without affecting the operation of the program. When a
label is called by a program transfer instruction, the
calculator seeks the program position where the label is
identified and ignores location numbers.

Figure 3h, as previously indicated, is a simple
housekeeping operation (a subroutine) which is used
only to decrease the number of program steps. This
sequence of instructions functions as a subroutine and
therefore must be ended with a return instruction.

The CODE column on the coding form is for showing the
two-digit code the calculator assigns to each key
function. Cross references for converting key functions
to key codes and vice versa are provided in Figures 1a
and 1b.

Enter the Program

After the program is written on a coding form, it can be
entered into the calculator by resetting the program
counter ([2nd] [EM), switching into the learn mode([LRN])
and pressing each key in the KEY column of the coding
form beginning with location 000 (Figure 3a). Five digits
are always displayed in the learn mode — three for the
program location and two for the key code. Each
keystroke (except [2nd]) stores the function of the key
pressed in the location number displayed prior to
pressing the key. The program counter automatically
advances to the next program location. For this reason,
the two-digit key code will be displayed as zeros when
first entering a program. If numbers do appear, they are
from a previously entered program. When you are not
sure that the last key pressed was the correct one, simply
press [2nd] [[E¥ to decrement the program counter and
view the key code at the last location. If it is not correct,
press the correct key and continue. If it is correct, press
[sST] one time and continue.

147

After the last key is pressed for the program in Figure 3,
the program location number displayed should be 090.
If not, too many or too few keys have been pressed and
the following check and edit operations are mandatory.
Press [LRN] again to take calculator out of learn mode.

Check and Edit Program

After entering a new program into the calculator, itisa
safe practice to check that the program is stored properly
in the program memory. To check a program, press

[2nd] IEW 1RN] and compare the displayed location and
key code with the coding form by pressing [ssT]
repeatedly. When the key code displayed does not agree
with the coding form for a particular location, steps must
be taken to edit or correct the error. Unless the error is
near the end of a program, you should step past the error
a few locations, making note of the key codes, to
determine one of the following:

1. Is the error an extra key entry?
2. s the error a missing key entry?
3. Is the error simply a wrong key entry ?

Figure 4 illustrates the three types of entry errors. In
Figure 4a, the calculator displayed a second code 95 in
location 009 and the following codes are displaced by
one location. The error is corrected by backstepping

(IEW) until the display shows 009 95. Pressing

[2nd) I deletes the extra 95 code and raises the
following codes to their proper positions and the display
will show 009 80.

Figure 4b shows that the code 95 is missing which results
in the following codes being displaced by one location.
This error is corrected by backstepping to location 022
and pressing [INs] [=]. The insert key shifts the codes in
locations 022 and up to the next lower location and
inserts a 00 code in location 022. Pressing the equals key
places the correct code in location 022, the counter
advances and the display shows 023 80.

148

Loc [cooe[KeY | pispLAY
75 |- 006 75
15 | E 007 15
% [= 008 95 ey
@ 80 | “if pos 009 95 «— entry
o | g7 [010 80
THE 011 87
o [0 012 01
75 | - 013 00
LOC |CODE| KEY DISPLAY
|5 019 05
020 |75 | - 020 75
15 | E 021 15 Missing key
(b) % | = 022 80~ entry
80 | ‘fipos| 023 89
89 | '3’ 024 01
025 | 01 | 1 025 93
K 026
LoC [CODE] KEY] DISPLAY
% | = 048 95
81 | HIT 049 81
os0 | 46 | ‘LBL | 050 46
& 8 | 2 051 02 «—Wmf’ykey
% 052 93
05 |5 053 05
85 | + 054 85

‘Denotes 2nd function key

Figure 4. Key Entry Errors
149

A wrong key entry is evident in Figure 4c because all
locations except 051 have the correct code displayed. In
this case, the 2nd prefix was not originally entered, thus a
numerical two was entered. This error is corrected by
backstepping to location 051 and pressing the correct
keys ([2nd] [2]).

If the location displayed is not near the location you desire
to change, switch out of the learn mode, press [GT0] yyy
(where yyy is the desired location number), and switch
back into the learn mode to make the change.

Document User Instructions

After the program is verified to have been correctly
entered into the calculator program memory, the user
instructions form should be used to document how to
operate the calculator to run the special program. Of
course, the basic information for the user instructions
should have been developed along with the flow diagram
prior to coding the program. Well documented user
instructions will permit you or someone else to later run
the program without considering the details of the flow
diagram or the coding form. Figure 5 illustrates a user
instructions form filled out for the sample program
entered into the calculator.

The user instructions include: an appropriate title,
information to be placed on the magnetic card if the
program is recorded, informational steps of how to run
the program, and notes which are pertinent to the user.
Step one may seem basic but it serves as a reminder to
check that the proper program is in the calculator,
whether entered from the keyboard or a magnetic card.

Running the Program

To use this program, suppose the number of checks
shown by the last four bank statements are 4, 13, 10 and
22, and the individual service charges on the statements
and the total service charge are required.

150

SR-52 Ju
User Instructions {
TI7LE _Checking Account Service Charge PaGE.l___OF 1

[[A Check Service Charge LD-1

n— Ser Chg RCLn

STEP PROCEDURE ENTER PRESS DISPLAY

1. | Enter Program

2 | Enternumber of checks | n |[A] Service Chg.

3. | Torecall value of n

for displayed service

charge: [E] n

NOTE:

Charge rate

No Cost

Checks (n) _per Check

1-5 $0.10

6-10 $0.09

11-15 $0.08

16or 50.07

more

Figure 5. Sample Program User Instructions

151

Enter Press Display Comments

4 [a] 4 Jn
[sTol 01 4 Store in Roi

13 [A] 1.19 95 + (n — 10) x .08
[sum 01 1.19 Sum to Ro

10 (&) 95 5+ (n—5)x.09
Isum 01 .95 Sum to R

22 [a] 1.84 1.35 + (n — 15) x .07
suM 01 1.84 Sum to Ror
[E] 22, Check last entry
[Rel] 01 4.38 Total service charge

An important item illustrated by the above example is that
the individual results must be summed into memory to
accumulate a total service charge. Only specially written
programs have the effect of replacing the input variable
with its associated output variable without affecting
pending operations. You will recall this issue arose in
connection with avoiding [=] in subroutines. Thus,
because the present program has [=] in several places,
you cannot expect to obtain the correct total service
charge for four checks in March plus 13 checks in April
bythesequenced4 [A | [+]13 [A][=].Thisis
illustrated below:

Example: 4 checks + 13 checks # $1.59

Enter Press Display Comments

4 &) 4 Cost of 4 checks
=] 4 Add is pending

13 &] 1.19 Cost of 13 checks
(=] 1.19 Does not total

The pending add instruction was completed at the very
first (=] in the program. In this case, the correct value was
obtained for 13 checks at the completion of routine [A |,
although that would not always occur. Since the pending

152

add has been already completed, the final [=] in the
example key sequence has no further effect.

Two options may be considered to allow keyboard
arithmetic with program-produced numbers. The first is to
avoid leaving operations pending when the program is
invoked —using register arithmetic instead. This was the
option illustrated in the example before, where [sUM 01
was used to accumulate charges. The second is to write
the program in the style of a subroutine, avoiding [=]
entirely through use of parentheses, so that the effect of
the program is to replace the input with the output
without affecting pending operations.

You will probably want to permanently record your
personal programs on blank magnetic cards. To record

a program on a magnetic card, please refer to the detailed
procedure, Recording a Magnetic Card in Section IX.

Optimizing a Program

Of the many reasons to optimize a program, only two are
significant. One reason is to simplify program interface
requirements, and the second is to condense a program
to fitin the 224 program-step limit.

Simplifying the program interface requirements means
to make the program easier for you to use. Although the
sample program in Figure 3 is already quite simple, one
simple change which could be made is to have the final
answer displayed with the decimal fixed at two places.
Figure 6 illustrates the minor program changes required
to make this improvement.

Condensing a program to a smaller number of stepsis a
time consuming exercise. If a program is less than 224
steps and operates properly, any time spent to condense
the program is virtually wasted except for the personal
satisfaction of doing it. If a program exceeds 224 steps by
only a small number of steps, program optimization is
warranted. However, if a program is excessively long, it
should be split into two load modules. .. using the
memory registers to hold intermediate data while
changing load modules.

153

LOC [CODE| KEY

Existing program steps
shifted to lower locations

aoo 46 'LBL
i) .8
42 |ST0 |p Existing program steps
01 |1 s
09 (9
b T i ; : y
Added Sets display for fixed-point 2
steps ¢
5]

*Denotes 2nd function key
Figure 6. Program Interface Simplification

To help you become familiar with the problems of
optimizing a program, we suggest that you optimize the
program in Figures 2 and 3 to require fewer program steps.

154

XV. AN ADVANCED SAMPLE
PROGRAM OF
MATHEMATICAL MODELING

The chart below shows census data for the United States
for the years 1890-1970.

Year: 1890 1900 1910

U.S. Population: 62,947,714 75,994,575 91,972,266
1920 1930 1940

105,710,620 122,775,046 131,669,275
1950 1960 1870

150,697,361 179,323,175 203,235,298

What is the expected population, based on this data for
the years 1980, 1984, and 20007 This type of problem is
very common in many areas. What we attempt to do is to
model the behavior of one variable (population) versus
another (year) by means of a formula. The formula
generally contains unknown constants, which we attempt
to determine by a best-fit criterion using known data.
Having selected the formula and determined the best-fit
values for the constants in the formula, we may then use
the resulting mathematical model to predict the values
which will result for some unmeasured situation (a future
year, for example).

Two models are of particular importance, inasmuch as
they describe, between them, a large fraction of the
relationships observed in the real world. They are:

Model 1 Linear model, wherey = a + bx;
Model 2 Exponential model, where y = ae”*.

In these equations, x is the independent variable (year)
upon which the dependent variable y (population)
depends. The quantity y is the model-value predicted;
and (a, b) or (a,) are the unknown constants to be
determined by means of a best-fit analysis of known data.
Frequently, one doesn't know which of these two models
achieves a better fit to the data, and must simply try both.

155

A statistical measure for determining which model is more
successful is the coefficient of determination, which is
the correlation coefficient between the observed data and
the candidate model, squared. The model having the
larger value for the coefficient of determination is best

for the given situation. This coefficient varies between
zero and one, the better the model —the higher the
coefficient. This introduction sets up our problem.

Problem: Design a program to best predict the value of a
variable at some future point in time based on a quantity
of historical data.

We need a program to decide whether a linear or an
exponential model best describes given empirical data
(such as the census data shown). Then, based on this
decision, extrapolate the curve to some chosen point
intime.

Atthe highest level, the required program must perform
four functions:

1. Assimilate the known data, saving whatever is
necessary to perform steps 2 and 3.

2. Evaluate the coefficients of determination for each of
the two models and select the superior alternative.

3. Determine the unknown constants for the superior
model.

4. Use the model determined above to predict the value of
the as yet unmeasured quantity versus the independent
variable.

The initial step in the solution to this problem is the
thought organization and equation collection phase.

The first result of that process is the observation that the
two models are almost identical: With the linear model we
fity = a + bx; whereas with the exponential model we fit
Iny=Ina+ Bx. Thus in both cases, provided one first
takes the natural logarithm of y or not as appropriate to
the model, the fitting problem is of the same form: Fit Z

(y orIny) to a model of the form A (a or In) plus B

156

(b or 8) times x. From this we see that the working core
of the program should be something which assumes a
linear model Z = A + Bx, where the interpretation of Z
(y or In y) will depend upon which of the two original
models is being examined.

Recognizing this, the equation collection phase produces
the following equations” for the best-fit values of A and B
and the resulting coefficient of determination r.

g: X _1ﬁ (g: xk)(i Zk)
L it K

n

[Zxe-n(zs) [z2-a(Z2)]

In these equations, n is the number of data pairs available,
dependent variable versus independent variable. The
quantity Z, is defined equal to y, for the case of the linear
model and is equal to In y, for the exponential model. The
model 1 constants a and b are equal to Aand B
respectively when Z,=y,. The model 2 constants « and
are related to A and B derived from setting Z, = Iny,
through the equations 3 =B, a=e™".

*These equations would be found from a study of a text
on the relevant statistical subject—linear regression.

157

Observe that all the quantities A, B, and r? depend on the
data through various sums () which can be accumulated
as we input the data. Our preliminary design is
summarized by the flow chartin Figure 7.

INITIALIZE
(CMs)

=
ACCUMULATE
SUMS (BOTH
MODELS)

P

COMPUTE 2
‘1 (BOTH MODELS)

REPEAT FOR
ALL DATA

DISPLAY 2
rs

BEST .
MODEL NO. COMPUTE
BEST-FIT
VALUES A, B
i]
DISPLAY COMPUTE
BEST-FIT y (XA B)
CONSTANTS e
i 1
DISPLAY y(x) END

Figure 7. Mathematical Model Flow Chart

158

A preliminary specification for how the program should
work is provided by our initial-version program user
instructions (conceived before any code is written) in

Figure 8.
STEP PROCEDURE ENTER PRESS DISPLAY
1 |Load program
2 |Initialize [E]
3 [Independent variable X [A] X,
4 |Dependent variable Vi Vi
(Repeat steps 3 and 4
for all data pairs)
5 |Compute models | e Best mod. no.
[RUN] wora
JRUN] porb
2
6 |Predicty (x) X [o7] y (x)
(For new x values
repeat step 6)

Figure 8. Preliminary User Instructions

159

The preliminary memory assignments may be made by
examining the sums to be formed:

Preliminary Memory Assignments

Roo unassigned Rio X (Iny)?

Roi Xy R xiny

Roz Ri2 unassigned
Ros 3 Ria unassigned
Ros 2x? Ri4+ unassigned
Ros n Ris unassigned
Ros Xy Ris unassigned
Roz 3y? Riz unassigned
Ros Zxy Rz unassigned
Ros Xlny Ris unassigned

As we begin coding (figure 9), we expect to save various
intermediate quantities in the unassigned memory
registers. The user instructions and memory assignments
represent a considerable fraction of the total programming
design task.

As you look over the preliminary user instructions you
may next wish to make an improvement. Recognizing
that miskeying a number and pressing [B] could prove
awkward as things stand, you choose to add a function
(called B') which nullifies the effect of the wrong value of
¥.. We therefore have a modification to the user
instructions: '"To correct an error after pressing [B |,
press [2nd| Il and key in the correct value.” All that is
necessary at B' is to subtract from memory those
quantities which were added as a result of pressing [B] .
Whereas the code at B is going to look almost like that at
B (except for some inverse instructions) you seek a way
to economize. See the Data Entry code in figure 9.

160

LOC |CODE| KEY LOC |CODE| KEY | | LOC [CODE| KEY
000 | 81 | HLT 8 | 2 43 | RCL
46 | *LBL 22 | Inv 00 |0
1A 030 | 46 | *LBL 0 |1
42 | STO 88 [*2 60 | *ifflg
00 |0 44 | SUM | | | 00 | 0
oos | 0f |1 00 |0 78| *5!
81 | HLT 07 | 7 22 | INV
46 | *LBL | [®35 | 30 | *VX 46 | *LBL
12 | B 23 | Inx 78 | *5
42 | ST0 60 | "iffig | [oss | 44 | SUM
o0 | 00 |0 00 [0 0|0
02 | 2 89 | 3 03 |3
50 | *stfig | [°4° | 22 | INV 4 | e
0 |0 46 | *LBL 60 [“iffig
46 | *LBL 89 | '3 070 | 00 | O
015 [17 [B 44 | SUM 79 | 6
60 | “ifflg 00 |0 22 | INV
00 |0 045 [09 |9 46 | *LBL
a7 | *1 40 | ¢ 79 | 6
22 | INV 60 | *ifflg | | °75 | 44 | SUM
oz0 | 46 | *LBL 00 | 0 00 |0
a7 [7 | 4 04 | 4
44 | SUM | (950 | 22 | INV 30 | *Vx
00 [0 46 | “LBL 65 | x
06 | 6 TR 4 oso | 43 | ROL
025 | 40 | Y2 44 | SUM 0|0
M (0 01 |1 02 | 2
00 |0 055 | 00 |0 95 | =

"Denctes 2nd function key

Figure 9(a). Model Fit/Data Entry Module

161

‘Denotes 2nd function key

Figure 9(a). Model Fit/Data Entry Module

162

LOC [CODE| KEY LABELS REGISTERS
60 | “ifflg A Xy 0o
085 00 |0 B Yy o1 last x
LA e c 02 lasty
22 | INV D 03 3X
46 | "LBL £ |nitialize 04 32
Ot ki A 0s N
00 | 44 | SUM &' Correction 06 3y
00 |0 c o7 3y?
08 |8 2} 08 ZXy'
43 | RCL E 08 ny
00 (0 10 X(Iny)?
il R) 11 3xIny
65 | = 12
43 | RCL 13
0 |0 14
02 |2 15
1005e | 1 a3 SN % 16
95 = 17
60 | “iffig 18
0 |0 19
68 |8 FLAGS
228 L INY o Used
46 | "LBL 1
68 |8 2
44 | SUM 3
il bl 4
110 T
018 1

LOC |CODE| KEY

12| 60 | “ifflg
00 |0
69 | "9
22 | INV
46 | "LBL
17| 69 | 9
44 | SUM
00 {0
05 |5
43 | RCL
122] 00 | 0
02]e2
86 | ‘rset
46 | “LBL
15 E
127| 47 “CMs
81 | HLT

‘Denotes 2nd function key

Figure 9(b). Model Fit/Data Entry Module

This code performs all of the initialization, data summing,
and error correction in less space than would have been
required had you not thought to use a flag to skip around
all the inverse instructions for B and hit upon all of them
for B'. You now count and find that 129 program steps
have been used. It does not take you long to discover that
there is much left to be done and that fitting it all into 95
program steps is impossible, You might consider
removing the B’ error-correction feature; however, as you
assess the future computations, you recognize that the
remaining tasks will require almost all of a 224-step load

163

module anyway. Your decision is therefore to split the
problem into two load modules. The first, which you
already have completed, is the data entry module. The
second is the analysis module which must perform all the
remaining computations. Furthermore as you recognize
the amount of computation left to be done you note that
the preliminary user instructions present a (or o) and b
(or 8) in the opposite sequence from the one naturally
following from the equations. These considerations result
in another modification to the user instructions: "“After
performing all empirical data entry, load program card
number 2."" Also, "“Following determination of the best-fit
model type at A" (rather than C as before) ''the quantities
£ (or b) and « (or a) are found in sequence by pressing
RUN." Finally, 'r? is shown upon pressing RUN again.”

Now examine the remaining problem. The similarity in
what must take place to compute A, B, and r? for the two
models is evident. The only difference appears to lie in
whether the quantities stored in Ros-Ros or those in
Ros-R11 are used. The technique which comes to mind is
to call asubroutine and let it use some indirect memory
references. In order to compute r? this subroutine will
need to compute the quantities

k=1 k=1 /\k=1
n 1fo. v
and 3 2,2 - (S Zh.)
k=1 \k=1 ,

Because the first of these will be needed to find A and B,
we choose to store it in Ris in the subroutine where it is

computed. But there are two models to be evaluated and
hence two such values to be saved. We select Ro1 to hold
the value produced by the subroutine for model-1, as Ro
is now free to use again. To distinguish between Ros-Ros

164

and Ros-R11 by indirect addressing, reserve Ris-Ri7 as
pointer registers. It is apparent that we still need a place
to store the quantity

N2

n 1'!’1
Exk? H(Zxk)

k=1

for this quantity is used several times in the calculations.
Select Ri1. for this purpose. Also, the r2 value for model-2
must be compared with the value for model-1, so we must
save the model-1 value somewhere and choose Ri2. This
results in the following preliminary memory assignments
for the Analysis load module.

Preliminary Memory Assignments (Second Load Module)

Roo unassigned Rio X (Iny)?

Ror Ixy—n~' (Zx) (Zy) R 2xlIny

Ro2 unassigned Riz2 r? (linear model)
Ros %x Ria unassigned

Ros Xx2 Ris“Zx2=n-1 [(3x)?

Ros n Ris Pointer 1(6 or9)
Ros Xy Ris Pointer 2 (7 or 10)
Ro7 Xy? Ri7 Pointer 3 (8 or 11)
Ros Xxy Ris ZXZ—=n 1 (Zxi{ZZ)
Ros XIny Ris unassigned

You may now proceed with much of the coding of the
second load module (figure 10). Name the subroutine C’
which computes r?, and name two as yet undefined
subroutines (for finding A and B) A" and B'. Although A’
and B' are not defined yet they doubtless will require a
pointer (either to Ro: or to Ris). We store this pointer in
Ria. The main portion of the analysis module can now be
coded —see instructions 000-110 of the Analysis Module
at the back of this section.

165

toc [cooe] kev | [Loc Jcooe] ke | [Loc Jcooe[Kev
000 | 46 | "LBL 01 | 1 2 | 1w
1A o7 80 | “ifpos
8 roL |[oe]8]"C o
0|0 42 | sT0 4 | sum
o | 4 o1 [1 oo | 01 | 1
oos | 75 [— 02 [2 02 |2
43 | RoL 43 | RL 50 | *stfig
0|0 035 | 01 | 1 o1 [1
03 |3 08| 8 02 | 2
0 | e 42| s10 | |oes [81 [HLT
o0 | 85 | - o[0 o1 | 1
43 | RoL of | 1 08 | 8
o [o o | 03] 3 42 | S0
05 |5 44 | suM o1 | 1
% | = o1 [1 oo [03 |3
015 | 42 | STO 05[5 17 | '8
o1 [1 44 | SUM 81 | HLT
o | 4 oss | 01 | 1 16 | A
06 | 6 06 | 6 2 | Iv
42 | S0 a4 | sum | [0 [23 [inx
oz0 [0f |1 o1 | 1 81 | HLT
05 [5 07 |7 43 | RCL
o7 |7 050 | 18 | *C o1 | 1
42 | ST0 75| - 0|2
o1 | 1 43 | RoL | [oeo [81 | HLT
0z | 06 | 6 o1 | 1 46 | “LBL
08 | 8 02 [2 e
2 | S0 | [| %] - 2 | I

*Denotes 2nd function key
Figure 10(a). Model Fit/Analysis Module

166

“Denotes 2nd function key

LOC [CODE| KEY LABELS REGISTERS
50 | "stfig | | » Compare 00
08 SISO i 8 01 2xy —N'Ex3y
v I c 02
81 | HLT o 03 3%
3@l i3 e Estimate 04 ¥x2
94 | +- A" A-value 05
030 | 44 | SUM 8’ B-value 06 3y
[B c R o7 3y A
05 |5 D o8 xy, B
44 | SUM E 08 Xy
ol o 10 2 (Iny)?
095 | 06 |6 11 3xIny
44 | SUM 1ol
0 (1 13 Pointer 4
07 |7 14 3x2 —n-1(3x)2
01 |1 15 Pointer 1
100 | 42| STO 16 Pointer 2
01] 4 +7 Pointer 3
03 (3 18 57—~ 1xx37
s ERe 19
81 | HLT FLAGS
105 |16 | ‘A’ 0
81 | HLT 1 Used
43 | RCL 2
ot a
02 |2 4
LLCER] g
46 | “LBL

Figure 10(a). Model Fit/Analysis Module

167

LOC |CODE| KEY LOC |[CODE| KEY LOC [CODE| KEY
112 15 | E 0|1 5 1)
65 | x 04 | 4 42 | STO
43 | RCL 42| M4 |) 00 |0
oo |0 42 | ST0 07 |7
08 |8 00| 0 172| 56 | “rn
17| 8 | + 08 | 8 46 | “LBL
43 | RCL 5 | *rn A0 G
00 |0 147| 46 | "LBL 53 | (
et b 16 | "A a3 |
9% | = 53 | 177 36 | "IND
122| 60 | "ifflg 53 | (43 | RCL
015 Tl 36 | "IND 0|1
2 | INV 1s2| 43 | RCL 07 |7
81 | HLT a1 0] =
46 | "LBL 05 5 1e2| 43 | RCL
27| 22 | INV To R 00 |0
22 | INV 43 | RCL 0343
23 | Inx 1s7] 00 | 0 65 X
81 | HLT 03 | 3 36 | "IND
46 | "LBL 65 | x 1a7| 43 | RCL
o e | = 43 | RCL 0|1
53 | (00 |0 05 | 5
36 | "IND 162| 08 | 8 55 | +
43 | RCL () 43 | RCL
01 |1 55 | + 192 00 | O
37| 03 | 3 43 | RCL [
B | + 00 {0 5 1)
43 | RCL w7 05 | 5 42 | STO

*Denotes 2nd function key

Figure 10(b). Model Fit/Analysis Module

168

LOC [CODE| KEY
Ol
97| 08 | B
b s
Aol
43 | RCL
0|1
202| 04 | 4
8 | +
53 | (
36 | "IND
43 | RCL
207 01 | 1
06 | 6
75| —
36 | "IND
43 | RCL
212 01 | 1
05 | 5
40 | "x?
5 | +
43 | RCL
217 00 0
05 | 5
1)
54 1)
5 | *rin
222

‘Denotes 2nd function key

Figure 10(b). Model Fit/Analysis Module

169

The work is not complete, for you must still write the
portion of the main routine which evaluates ¥(x) and the
subroutines A', B, and C'. The foregoing code has
thoughtfully included a flag for remembering which
model was best. Flag 1 is set if the exponential model is
best and reset otherwise. Allocating Ros and Ros to the
constants A and B, the evaluation portion of the main
routine can now be written. Since E has not been used in
the second load module, modify the user instructions so
as to name this program portion E (rather than D as it was
earlier). You may now add the code instructions 111-130
to the Analysis Module.

It now only remains to write the three subroutines to solve
for B, A, or r2. These subroutines follow in a straight-
forward way from the equations.

This completes the programming. The final code, memory
and label assignments, and user instructions would be
documented and appear as in figure 11 after checking the
program with several problems having known answers.

| |<mAm ModelFitData Entry Card 1

Delete)

X, Yie INT |
CARD 1

u | @A Model Fit/Analysis Card 2

Compare Estimate
CARD 2

Figure 11a. Model Fit User Instructions

170

STEP

PROCEDURE

ENTER

PRESS

DISPLAY

Load program Card 1

Initialize

H

Perform 3-4fork=1,...n

Independent variable

Xy

X

Dependent variable

Yi

25

Yk

If you make a mistake

entering x, it may be

corrected before step 4

by reentering the proper

value. To delete an

incomect entry.

H

Reenter proper value

ofy, after B'

Load program Card 2

Find best model*

Findbor 8

borg

Find a or «

a0ra

Find r2

HEEE

Find model estimate for

any value of x

[

y (%)

(Repeat as desired)

“Model 1:y =a+bx

Model 2; y = ag™

Figure 11b. Model Fit User Instructions

171

Notice that instructions 131-146 in the Analysis Module
compute A, instructions 147-172 compute B, and 173-221
computes r?.

The program may now be used to analyze the census data
with the following results. The superior model is model
no. 2, the exponential, with a coefficient of determination
given by r? = 9914660242, a very good fit. The resulting
model is

y = ae”™®
where « = .0001716447
and 3 =.0141183065.

(This last value, for 3, implies a growth rate of about 1.41
percent per year.)

The predicted populations for the years 1980, 1984, and
2000 are given below rounded to the nearest integer.

1980: 237,140,403
1984: 250,917,854
2000: 314,510,831

Of course the same program can now be used to analyze
all kinds of data—vehicular traffic accidents, business
growth, cost-of-living, etc. Whether you really wish to
combine two statistical models into one program as was
done here is debatable perhaps. However, that was the
premise we started with; and it was sufficiently stressing
to involve almost all of the instructions you have learned
about.

172

APPENDIX A
MAINTENANCE AND SERVICE
INFORMATION

BATTERY AND AC
ADAPTER/CHARGER OPERATICN

Normal Operations

To ensure maximum portable operating time, connect the
AC9130 Adapter/Charger to a standard 115 Vac/60 Hz
outlet, plug into calculator, and charge battery pack 4
hours with the calculator off or 10 hours with the calculator
on. If during portable operation the display appears dim
or erratic, connect the adapter/charger and continue
calculations. CAUTION: Calculator can be damaged if
the adapter/charger is connected without the battery
pack installed.

Periodic Recharging

For maximum battery life, it is recommended that you
operate the calculator as a portable and recharge the
battery pack periodically. While the calculator will
operate indefinitely with the adapter/charger, the
rechargeable battery pack can lose its storage capability
if it is not allowed to discharge occasionally.

Excessive Battery Discharging

If the calculator is left on for an extended period of time
after the battery pack is discharged (for example,
accidently left on over night), connect the adapter/charger
for at least 16 hours with the calculator off. Repeated
occurrences of excessive battery discharging will
permanently damage the battery pack. Spare and
replacement BP-1 battery packs can be purchased from
your local Tl Retailer or directly from Texas Instruments.

173

BATTERY PACK REPLACEMENT

The battery pack can be quickly and simply removed
from the calculator. Hold the calculator with the keys
facing down. Place a small coin (penny, dime) in the slot
in the bottom of the calculator. A slight prying motion
with the coin will pop the slotted end of the pack out of
the calculator. The pack can then be removed entirely
from the calculator.

The exposed metal contacts on the battery pack are the
battery terminals. Care should always be taken to prevent
any metal object from coming into contact with the
terminals thereby shorting the batteries.

174

To reinsert the battery pack, place the rounded part of
the pack into the pack opening so that the small step on
the end of the pack fits under the edge of the calculator
bottom. The slotted end of the pack will then be opposite
the instruction label. A small amount of pressure on the
battery pack will snap it properly into position.

CARING FOR MAGNETIC CARDS

The magnetic cards have the ability to retain information
placed on them for an indefinite amount of time. The
recorded information does not tend to fade or weaken
with age and will remain unchanged until actually altered
by an external magnetic field. While the magnetic signal
will not deteriorate, the physical characteristics of the
card and the card drive unit in the calculator are
susceptible to damage.

Handling Cards

Developing good habits in handling magnetic cards is
important. A card which is physically marred, creased or
dented may be useless for its intended purpose. However,
physical degradation of a card generally results from an
accumulation of mishaps or poor handling techniques.

175

There are numerous contaminants to consider. Ashes,
food particles, drinks, dust and oil-based liquids are the
most common contaminants to guard against. A card can
be contaminated by placing it directly on a contaminated
surface; or indirectly, by transferring the contaminant to
the card with your fingers. Even the natural oils on your
fingers will transfer to the cards and cause accumulation
of dust and foreign particles. Note that using one
contaminated card in the calculator may contaminate not
only the calculator card reading mechanism, but also
other cards which are used later. In some cases of
extreme contamination by oily materials, the calculator
card reading mechanism can be rendered inoperative and
will require repairs by a Texas Instruments Service Facility.
The following simple instructions are important to

assure maximum life of the magnetic cards.

1. Handle a card by its edges when possible.

2. Keep the cards away from magnets and sharp objects
that could scratch the oxide coating.

3. Keep the card in the vinyl carrying case or other
protective container while the card is not in use.

4. If a card is contaminated, clean it immediately.

Cleaning Cards

Contaminated card may be cleaned easily without using
special cleaners or solvents. Petroleum based fluids
should not be used under any circumstances to clean
cards. Dust and foreign particles should be removed from
a card with a soft brush or a dry soft cloth. Other forms

of contamination may be washed from the card with warm
water and a small amount of mild liquid detergent. Rinse
the card and dry with a soft cloth.

176

Writing on Cards

The blank magnetic cards furnished with your calculator
have areas designated for you to write numbers, symbols
and abbreviated titles for your personal programs, You
may write information temporarily on a card with a soft,
fine-lead pencil or a fine-point, felt-tip pen with washable
ink. Of course, a felt-tip pen with non-washable or
permanent ink will permanently mark your card. For best
results, check with yourlocal school supply outlet and ask
for felt-tip pens that are used to write on transparencies.
Most outlets carry a variety of colors with washable or
permanent inks.

USING THE HEAD-CLEANING CARD

The specially marked head-cleaning card furnished with
your calculator has an abrasive coating in place of the
usual oxide. Using this card will remove any buildup of
oxide or foreign particles from the magnetic read/write
head in the calculator. This card should not be used as an
all-purpose remedy for any difficulty experienced, as
excessive use could change the characteristics of the
read/write head. The In Case of Difficulty instructions
should normally be used as the guide for when the head
cleaning card may be used to remedy a difficulty. To use
the card; press [2nd] [, insert the card into the lower
slot of the calculator as you would a regular card, and let
the drive motor pull the card through the calculator.
Press [CLR] if the display flashes after using the card. The
head cleaning card should be used sparingly and no more
than one time per difficulty.

1T

IN CASE OF DIFFICULTY

In the event that you have difficulty with your calculator,
the following instructions will help you analyze the
problem and you may be able to fix your calculator
without returning it to a service center. If the suggested
remedies are not successful, contact the Consumer
Relations Department by mail or telephone (refer to If You
Have Questions or Need Assistance). Please describe in
detail the symptoms of your calculator.

If one of the following symptoms appears while operating
with the optional printing unit, remove the calculator and
reinstall the battery pack before using the following
procedures. If the symptom disappears when the
calculator is removed from the printing unit, refer to the
printing unit manual.

1. While performing keyboard operations, the calculator
display flashes erratic numbers, grows dim or even
goes blank. Or, card reader turns on automatically.

The battery pack is discharged, refer to Battery and
AC Adapter/Charger Operation.

2. Display is blank for no obvious reason.

Press and hold momentarily. If display turns on,
the calculator was in the run mode executing a loop
program with no means to stop or waiting for a card
to be inserted. Check program for improper code. If
display does not turn on, the battery pack is not
properly installed or it is discharged.

3. Display flashes each time one of the user-defined keys
is pressed.

The key pressed has not been assigned as a label in
the program or an illegal operation, overflow or
underflow occurred while the program was running.

178

4. Display flashes after reading a magnetic card.

The calculator has detected a reading error. Repeat
the card reading procedure. If difficulty continues, try
reading other cards. If other cards read properly,
check the first card for physical defects or
contamination and clean or replace card as necessary.
If other cards do not read properly, use the head
cleaning card one time —refer to Using the Head-
Cleaning Card.

5. While reading or recording a magnetic card, the card
stops before it should or even stops inside the calculator.

Press and hold [HIT] momentarily. If display does not
turn on, the battery pack is discharged. If display
turns on, press [2nd] [. If card passes on through
the calculator, check card for dust, smudges on top
side, or physical defects and clean or replace card as
necessary. If the card does not move, but the
distinctive whine of the drive motor can be heard,
push the card on through with your finger or another
card. Check card for contamination or physical
defects.

6. A program which has been read from a prerecorded
card does not run properly.

Check contents of program memory against program
listing for that program. I an incorrect instruction is
found in program memory, perform Diagnostic 3
(BA1-20) in the Basic Library. If an incorrect
instruction is not found in program memory, perform
Diagnostic 1(BA1-18) and Diagnostic 2 (BA1-19). If
anerror code is displayed when running either
diagnostic, reread the diagnostic card and check for
same error code.

7. Calculator displays incorrect results,

Perform Diagnostic 1 (BA1-18) and Diagnostic 2
(BA1-19) in the Basic Library. If an error code is not
displayed when running either diagnostic, check for
invalid key sequence. If an error code appears, repeat
diagnostic and confirm error code.

179

When returning your calculator for repair, return the
calculator, adapter/charger, and any magnetic cards
which were involved when the difficulty occurred. For your
protection, the calculator must be sent insured; Texas
Instruments cannot assume any responsibility for loss of
or damage to uninsured shipments. [nclude information
on the difficulty experienced with the calculator as well

as return address information including name, address,
city, state and zip code. The shipment should be carefully
packaged, adequately protected against shock and rough
handling, and sent to one of the Texas Instruments
Service Facilities listed on the back cover.

NOTE: The P.O. box number listed for the Lubbock
Service Facility is for United States parcel post shipments
only. If you desire to use another carrier, please call the
Consumer Relations Department for the proper shipping
address.

IFYOUHAVE QUESTIONS OR NEED ASSISTANCE

If you have questions or need assistance with your
calcutator, write the Consumer Relations Department at:

Texas Instruments Incorporated
P.0O. Box 22283
Dallas, Texas 75222

or call Consumer Relations at 800-527-4980 (toll-free
within all contiguous United States except Texas) or
800-492-4298 (toll-free within Texas). If outside the
contiguous United States, call 214-238-5461. (We regret
that we cannot accept collect calls at this number.)

For repair-related inquiries only, you may also call our
Service Facility toll-free at 800-858-1802 (800-692-1353
within Texas).

180

APPENDIX B
ERROR CONDITIONS

A number of different situations result in a flashing
display, signaling an error condition. These conditions
and the quantity flashed when in (or upon returning to)
the calculate mode are summarized here.

Underflow and Overflow

When a number entry or calculation results in a non-zero
quantity whose magnitude is less than 1. < 10 *? an
underflow condition exists and the display flashes 1.—98.
Similarly, if a magnitude greater than 9.999999999 = 10%?
should occur, the display will flash 9.999999999 99 to
indicate overflow.

Division by Zero
Attempting to divide by zero or to take the reciprocal of

zero results in an error with the same indication as for
overflow, a flashing 9.999999999 99 display.

Function Argument Outside of Range
The mathematical functions have certain restrictions

placed on their arguments in addition to those imposed
by the overflow/underflow criterion. The functions,

181

invalid arguments, and the error indications are
summarized below.

Function Invalid Argument Quantity Flashed

x! Negative or non-integer Int(x|)!, where
Int (x) = integer
part of x.

Vx Negative number Vx|

In x Negative number In(|x))

log x Negative number log (x))

sin~'x x| =1 X

cos 'x x| > 1 X

¥z y<o0 Iyl

Vy y <0 Viy]

Vy x=0,y=0 1.

Undefined Transfers

The display will flash the value currently in the display
register whenever an attempt is made to transfer to an
undefined location. Examples of such errors are:

1. Attempting to transfer to an address not in the range
000 through 223.

2. Attempting to transfer to a label address which has not
been defined by means of a label instruction.

3. Indirect transfers where the pointer is not one of the
integers 0 through 223,

Attempt to Execute Past Location 223

Whenever the program counter reaches location 223, if
there is no halt, return, reset, or other transfer instruction
there the program counter will attempt to increment to
location 224. However 224 is an invalid program address
and this gives rise to an error similar to those discussed
above. The display flashes the current value in the
display register.

182

Exceeding Capacity of Internal Registers

The internal processing registers can accommodate up
to ten pending operations, and hence up to nine open left
parentheses. Any calculation which attempts to exceed
these maxima results in an error indication. The display
flashes the current display value.

Illlegal Operation Sequences

Various sequences of keystrokes are meaningless and
result in an error condition. Particularly, these include
sequences with missing operands such as the following:

[keg 01 (] O]
81 [F[=]
[Red 11 [+ [X]
142 [7%] [+]

Such sequences with [] or [=] immediately following
an arithmetic operator or with two consecutive operators
(or two-variable functions) not separated by an operand
are illegal. The display flashes the current display-register
value.

Clearing an Error Condition

The display can be stopped from flashing by pressing

[€E] . In most cases this also removes all internal
conditions indicating that an error is present. Whether
the calculation can proceed after an error has occurred
depends on the type of error, the problem itself, and
quantities saved in memory. However, there is one error
condition which remains latent even after the flashing has
been stopped with the [CE] key. When direct register
arithmetic results in underflow or overflow of that register,
the error condition remains until the contents of that
register are changed.

183

Example:

Enter Press Remarks

1 [EE]

51 [sT0] 05 1 % 10°' stored in Ros
3 o5 Overflow in Ros
[CE] Flashing halted

9 [2nd] Calculation V9 = 3

performed properly

[red 05 Error condition in

Ros still present

Errors Encountered in the Run Mode

When any of the foregoing errors occur in the run mode,
what happens next depends upon the programmer.
Program halts are not an automatic consequence of an
error condition. The program will continue, using the
value which would have flashed in the calculate mode for
subsequent calculations, and the presence of an error
will be signalled by flashing the “answer" obtained when
the program halts. This may or may not be the correct
answer, depending upon the problem and the type of error
condition. However, it is the best selection which can be
made in the absence of specific programming directives
to take other action. These directives, which should be
supplied in the program at points where error conditions
might arise, utilize the if-error branching instructions
discussed in Section X.

Errors In Reading or Writing Magnetic Cards

When the display flashes immediately following a card
read operation, the calculator has detected a read error.
Repeat the read operation, if display continues to flash,
refer to Appendix A. If the display flashes after recording
acard, the black tab over the write-protect window of
the card is missing or improperly positioned.

184

GLOSSARY

Address—A location in program memory —designated by
either an absolute address (a number from 0 through 223)
or a label assigned in a program,

Addressable Register—One of the 20 storage areas of
data memory.

Algebraic Heirarchy — The rules providing a unique
interpretation of an expression which lacks a completely
definitive set of parentheses. The SR-52 interprets
expressions using these rules when parentheses have
not all been explicitly included.

Angular Modes — The two options, degrees or radians, in
which angles are to be expressed. Selected by slide
switch on upper left of keyboard.

Backstep —To decrement the program counter in the
learn mode for editing purposes. Effected by [bst [

Basic Program Library — The set of recorded programs
and manual included with your SR-52.

Branching Instruction (conditional transfer instruction) —
A decision making program statement offering a choice
of ways to continue processing.

Calculate Mode — The type of SR-52 operation in which
calculations are performed under step-by-step control
from the keyboard.

Card (Magnetic Card, Program Card)— The magnetic strip
for permanently recording a program,

Case Statement— A type of programming element
wherein transfer is to be made to one of n prescribed
locations, depending upon the value (1 through n) of a
control variable K.

185

Chain Operations — A sequence of mathematical
operations where the result of one calculation is used as
the starting point of the next, all the way to the end of
the sequence.

Clear—A generic term meaning to reset to the original
zero starting condition. One may clear entries only (see
[€E] in the key index), clear display and pending
operations ([CLR]), clear data memory only ([2nd] T8), or
reset program flags and clear subroutine return-pointer
registers ([2nd] IEN).

Code —See Program Coding or Key Code.
Commands —Program instructions.

Conditional Transfer Instruction (Branching Instruction)
— A decision making program statement offering a choice
of ways to continue processing. Effected by [znd] — 4
it zro IO if e O i fig [T (s: |8

Control Flags — See Flags.

Coordinate Transformation— Conversion from polar
coordinates to rectangular coordinates or vice versa, an
operation provided by the [znd keys or their inverse,

Data Memory — Twenty addressable registers numbered
00-19. See Memory.

Decisions— The results obtained through use of the
branching instructions.

Degree Mode — See Angular Modes.

Delete —The act of eliminating one or more program steps
as a part of the editing process. Subsequent steps are
automatically moved up to fill the gap. Effected by the
[2nd] HTH keys.

186

Direct Register Arithmetic (Direct Register Operations) —
Performing addition, subtraction, multiplication, or
division upon the contents of an addressable register
(leaving the answer in that register) without recalling the
register contents from memory. Effected by ;

(inv] 50M , [2nd] B . and [iNV] [2nd] (D .

Display —The 10 digit (maximum) representation of the
display register, plus 2-digit scientific notation.

Display Format—The manner in which numbers are being
displayed. There are two independent issues: scientific
notation usage and mantissa format.

Display Register— The register which contains the
guantity most recently computed, recalled from memory,
or entered from the keyboard. Can carry 12 digits plus
scientific notation.

Drive Motor—The mechanical part of the calculator that
transports the card through the machine.

Dummy Operations—Those program steps which serve
solely to supply the current display-register value as an
operand. Example: In the sequence [Rct] 01 [inx] + ([STO|
= [RcL 02), the [ST0] is an economical way of introducing
the quantity In (+R01) as the first operand of the open
parentheses.

Editing — The processes of altering, adding, and deleting
instructions as a final process of creating a working and
satisfactory program. Effected by the [2nd] R .[ns],
[ssT| ,and [2nd] W keys.

Error Conditions — A variety of situations which arise
when the calculation encounters ill-defined gquantities,
illegal operations, or numbers beyond the capacity of the
SR-52. (See Appendix B.)

Exchange—The operation in which the content of the
display register is exchanged with that of a specified
addressable register. Effected by the [znd] [El keys.

187

Execution —The phase during which the SR-52 is running
under program control (the run mode). The controlling
program is said to be in the process of execution.

Exponent—As used here, the power of ten associated
with a scientific notation number representation.

Exponentiation — A built-in two-variable function for
raising y to the xth power. Effected by the key.

Expressions —Instruction sequences which acquire a
value depending upon register contents and which, when
taken alone, leave no operations pending or operators
unsatisfied. Expressions set off by parentheses may be
combined with other such expressions to form larger
expressions.

Extraction of Roots — See Root Extraction.

Fixed-Point—The content of the display register can be
rounded to the number of places specified by the [2nd]

key.

Flags (Program Flags) — On/off program switches
numbered 0-4 used as markers for various events in a
program. Two-state devices which can be changed from
the keyboard or in a program. Certain branching
instruction [} tests the state of a flag as the basis fora
transfer decision. Flags are “'set"” by [2nd] and “reset"
by [2znd] [inv] EXTY -

Flowchart— A programming design device which
graphically charts the paths of processing through a
program.

Format — See Display Format, Mantissa Format.

Functions—The keyboard mathematical operations of
one and two variables (such as x! or y*).

188

Function Key—The meaning attached to each key: The
first function is accessed directly; the second, through
prefixing the key with [2nd] .

Head-Cleaning — An occasional maintenance process to
ensure proper operation of the magnetic card read/write
mechanism.

lllegal Instructions — Sequences which are not properin
the SR-52 discipline. See Appendix B.

Indirect Instruction — Any instruction which uses the
contents of a specified register as a pointer to the actual
data register or program address.

Initial Display Mode — The display mode invoked when the
SR-52 is first turned on. It uses the initial mantissa format,
but does not indicate scientific notation.

Initial Mantissa Format — That type of display wherein up
to ten digits are used to represent a number. A decimal
point can be present anywhere in the number and trailing
zeros are suppressed.

Insert— A program editing procedure whereby one pushes
down all instructions from the current location leaving a
null instruction. A new program step is then inserted to
take its place. Effected by [ins] .

Instruction —One or more key steps which define an
action to be taken in a program.

Instruction Code — See Key Code.

Internal Processing Registers — The ten registers which,
along with the display register, are used by the SR-52 to
evaluate expressions with pending operations without
affecting the user’'s data registers.

Interruption — The act of halting program execution from
the keyboard without precise knowledge of the state of
processing at the time of intervention.

189

Inverse Operations—Those operations which result when
an operation is prefixed by [IN] , which reverses the effect
of the operation.

Key —Sometimes used to mean one of the 45 physical
keyboard elements, but more generally used to denote
one of the 88 key functions, including both first and
second functions.

Key Code —The two-digit representation of each key
based upon its column (1-5 for primary meanings or
6-0 for second meanings starting from the left) and row
(1-9 from top to bottom) location on the keyboard.

Key, User-Defined —One of the ten functions, [a |
through [€] and [2nd] [l through @ which
provide a starting point for program execution by merely
pressing that key.

Label—A name assigned to a particular point in a
program which can be referenced by a transfer instruction
or by program initialization. Effected by [znd] :

Learn Mode —The type of SR-52 operation in which
keystrokes alter the contents of program memory. This
mode is used for keyboard construction and editing of a
program. Effected by [LRN] .

Levels of Parentheses— The number of operations made
pending by means of open (left) parentheses.

Levels of Routines—The number of program segments,
either active or suspended, and awaiting return of control
inaprogram.

List—To effect a step-by-step printed record of the
instructions of a program. (Can be used only with the
optional printing unit.) Effected by [list [

Load Module —Any portion of a partitioned program
which resides (in its entirety) in program memory at some
given time.

Locations —Positions in program memory (000-223).

190

Logical Tests—Those tests performed as a part of
conditional transfer instructions.

Loops—Program structures in which an instruction
sequence repeats a number of times before exiting to
other portions of the program.

Magnetic Card — See Card.

Magnitude —The numerical size of a number regardless
of its sign.

Mantissa— The number in scientific notation which is to
be multiplied by a given power of ten to equal the quantity
desired.

Mantissa Format— Any given convention for selecting the
number of significant digits to be displayed for the
mantissa part of a number in scientific notation or for the
number displayed when scientific notation is absent.

Memory — This generic term refers both to program
memory and data memory. Program memory contains the
program steps to solve a given problem and is addressed
000 through 223. Data memory consists of the twenty
addressable registers, numbered 00 through 19. A
register is usually designated by R,,,, where nn is the
two-digit number of the addressable register. Its contents
are denoted by a notation such as *R. (the contents of
Ris).

Memory Register—One of the twenty addressable
storage areas in the data memory.

Modes (Display) — See Display Modes.

Modes (of Operation) — The calculate mode, run mode,
and learn mode of using the SR-52.

NO-OP — See Null Instruction.

Notation — See Scientific Notation.

191

Null Instruction— An instruction which does nothing. This
is used during step insertion in program editing. When
the SR-52 is first turned on, program memory is filled with
null instructions, which are zeros.

Operand —A number or numerical expression in a
mathematical operation.

Operation—One of the four arithmetic functions (+, —, *,
-), or sometimes one of the two-variable functions y* and
V.

Operator—Any function that mathematically alters a
number.

Overflow — The situation which results when the
magnitude of a calculated or entered number exceeds
9.999999999 < 10°7. See Appendix B.

Overwriting — To replace the contents of a register with
another value, obliterating the first quantity.

Parentheses [(] [)]—Devices used to set off
expressions as in algebra, to ensure they will be evaluated
properly before being combined with other expressions.

Pending Operations — Those operations which cannot
immediately be completed —pending evaluation of
expressions opened by parentheses, or because of the
algebraic heirarchy.

Pointer— A number which resides in data memory but
which is used to specify a program address or another
addressable register.

Polar/Rectangular Conversions —See Coordinate
Transformations.

Powers — See Exponentiation.

Printer— An optional peripheral device for the SR-52
providing automated printing capability under program
or keyboard control.

192

Processing Registers — See Internal Processing Registers.

Program —The logical sequence of keystrokes, which
when stored and executed from program memory in the
run mode, effects the solution of a problem.

Program Coding — To write down the step-by-step
instructions of a program. Program code results from
that program design process.

Program Counter—The internal device which keeps track
of where the SR-52 currently resides in the instruction
sequence.

Program Flag — See Flag.

Program Instruction — One or more key strokes which
define an action to be taken in a program.

Program Location— Any of the 224 available positions in
program memory.

Program Memory — 224 |ocations where a program can
be stored. See Memory.

Radian Mode — See Angular Modes.

Reading — The process of loading a program from a
magnetic card into the SR-52 program memory. Effected

by the [2nd] [T} key.

Recall —To bring the value in a specified data register
into the display register. Effected by the [Rcl key.

Rectangular/Polar Conversions — See Coordinate
Transformations.

Registers — A generic term for any calculator storage unit
which may be used to hold a numerical value. See Internal
Processing Registers, Addressable Registers, Return-
Pointer Registers.

193

Reset—To restore to zero; especially to restore a flag to
zero. Also, the instruction which resets all flags, resets
the return-pointer registers, and positions the program
counter to 000. Effected by [2nd] [EN .

Return—A transfer of control back to a calling program
segment. Effected by [2nd] TN .

Return Pointer — An indicator showing where to return
control in a program after the processing sequence has
been diverted to a subroutine.

Return Pointer Registers — The two registers which
internally provide the return pointers for up to two
subroutines.

Root Extraction — A built-in two-variable function for
obtaining the xth root of y. Effected by =.

Rounded (Roundoff) — To eliminate the least significant
digits of a number and adjust the remaining digits to be
as close as possible to the original number. e.g., the
display register “rounds" from 12 to 10 digits for display.

Run Mode — The SR-52 type of operation in which
execution is under program control.

Scientific Notation — The method for representing a
number by a “mantissa’” m (in the range 1 = m < 10)
times a power of ten.

Second Function—The function or operation listed just
above each key. To effect these “secondary’ key
meanings they are preceded by the key.

Single-Step — The process of executing or observing a
program one step at a time. Effected by the [SsT] key.

Store—To place a replica of the contents of the display
register into a specified addressable register.

194

Subroutine —An isolated program segment used primarily
for repetitive calculations. It returns to the calling routine
(either the main or another subroutine) upon completion
of its task.

Subroutine Return Pointer— See Return Pointer.

Top-Down—The approach whereby a problem is solved
in the large before details are filled in.

Trace—A printer capability for automatically recording
each step executed and its result.

Transfer Instructions — Those instructions which can
cause the program counter to be repositioned to a point
other than that which would be reached by normal
incrementing. There are two types of transfers:
Unconditional transfers a/ways reposition the program
counter to some out-of-sequence location. Conditional
transfers, or branching instructions, make a test and
either transfer or not (fall through) depending upon the
outcome of the test.

Unconditional Transfer—Program instruction which
unguestioningly repositions the program counter to some
out-of-sequence location. See Transfer Instructions.

Underflow — The situation obtained when a number is
keyed in or is produced through computation whose
magnitude is greater than zero but less than 1 = 10 %7,
See Appendix B.

User Defined Labels— See Key, User-Defined.

Writing— The process of recording a program on a
magnetic card.

Writing over— See Overwriting.

195

INDEX

A
AC adapter/batterycharger, 173
BiGoperation. . aoies b s SR R 173
Accumulation in addressable registers 56
AGCUNACY S e e e 2,19
Additions s i get S Ui aBERE L ot L T 29,30
AROATEEST) or s NSy N T N e 88, 89
Addressablereqisters o . L un LS NN 2,33
AdvantagesiolSha02: o e e s s sl S R 2
Aldenraie RiorarGhy) i s e Vel - e e 46
Ambiguous expressions . . i L e L e 48
ANAuaEIMade: sahe s b e cis LS il 7,38
AN OGarTtiINS se. o s 5 s 4m Bty s A ek oo [SRy 36
A O O e e R L T A S S 36
APCEIETHITING OB DERT S0l IS, DT SaTI) [36
Arclangentaieiss (oSt DT ol cprai 36
Arithmetic operations. v . o o, Skt M sl 29,65
Automatic display mode switching 25
AUTOMBH G DI G5 oo bt it it . ot Sl 5, 136
B
Backstep~ €YY <OLIG VWOCTHIEL | v v 82
Basic Progremitibrary .Calculater Musaum - . - 8. 60
Battery charger/AC adapter .. . & o0 g0 173
Battervoperation soliasa 3 me sm S marih s re s 173
Battery packreplacement 174
Blanking:otcisplayine: B sl il nudsaps B sl of 61
Branchingy e, s il Sk susint st sharath 67, 89
EBSTHaVE S = snoahailifin ceieta il dooleuiii s AUt 82
c
Caloulateimpde. M Dak s Dinri g ISicE DO 4,10
Card, magnetic
5 Ty [A A U B I A o 110 ST g s | Sy 177
Gareoiity, = LI N R L R A TR RO 175
cleaningEsiis 210 i et a2 8 Tl Il S 176
handling: .Gt as o - SRS S e D s 175
PR O B G T . e e 1 S A 8, 60
reading=tt o008 o el st T s o 61
- Teret e s M e o e e T
WETIIQOR: e e 1T
Cartesiencaordinaias . o 2 o a e e 44
Giasastatement i e s e s 131

INDEX (continued)

GERAY . e)0 e e L el G 19,23
Chain operaians oo & & i & il 5 feato s 29
Change-signoperation . : « . « & & & as e 19, 21
Changinginsirdetions s it i s e ol h g 78
Chargdmgybatieby o'c o o 0 o L a6 e 173
Clearing
caletiaticmerr D Ul .. o nile 2w B e .o 8,24
(b} W T e o I S e s S 556
entHBs o idehiraie o v w e gt e A2
grrorconditions:. o & ¢ 5 % v oo e 40 R i o1
PrOGEAIMEMIBMORN: &l a1 s o o9 o s . SV B
CLEKEY: A il e o ons et i IRy o 5 24
CMEKEY & o 5 aiis o & b i 5 8 s o ekt R S 55
Godes instrocticn. = . = 2% . - PSSR 8578
oMo s el s R e, 141
Gommonlogaithims. & 7« 5 s w4 2w Rt Gl 35
Conditionaltransfers. . « + & 4 & = & W . R)
ControlHagS s o v = bS5 w5 i o v R 95
Gentrallingedhsplay: « ¢ o e o w SHARIRSS RIEAT 24
Gontrallingprintet: o o oo i IR ISR 132
Conversions,
degrees-minutes-S8ConNds s /4w s v = ¢ 0 b ow 42
dagreefradian. ', " . - . 2 St SE I S 41
polar/rectangalaf N, LalCUIaIor MUSSUM= .5 44
Coprdinate transformations v . o S0 44
Correclingprograms:« s o e tet bR il 78
D
(B L T o] A S e e 2,51
Dt agiSIBmm . & ¢ o & 4 e = ey R S HERER, 2,51
DECRIOEIS 0 o o syl s T et e SR RSSO SRR AT 88
Decrement and skiponzero « . . o . 98
Defective batterypack« . = W SRR 174
Degree-minute-second format 42
Dadresmades whil L 1 s g s TR 7.38
Degree/radianconversion 41
RELIREY: - it 505 e & Sl R RO R 81
Delstinginstructions: © & o i @ are o AR ST 81
Direct register arithmetic. "o .. 55
Discharged battery: 0. RIS 173
Display
BFEEEIE, = L o ol a -t e d sOT TR RN RRERY RCh 173
foEatii. Boms S R e ah
EIStEl.. . o v Sl b e e e 24,49

INDEX (continued)

E SO RRRE e s e SIS S Al 29,30
DIVISIO R0 THe MmOy s i B i ST e 55
DMSHceyiSail - s vTan e e RO TR 41
DR lceyiavenss L= Wl omel ascl il g, BIPMESCREARUESCTRS S epes 41
PSZNayy. = =l e e L T A 98
Dummy memory operations 58
E
EOINNGDYOGIaAMS & i e s o i v SRt o e 78
e e R o e 20
EE key, additionaleffects 21
EAUAIEKeYETS o e s e e 5,34
EGugis;whentoavaid - o o & & e naiautael o 27
RITOECORAIIONS: Tov o ans i T il oo o 28, 33, 181
Errats fastsfor . & . i s o dmnalngon] s 89
GETARCHION a0l s b o i o RYAESERYS I 36
R ot Wiyt s | o e oo o) R ay
Exchangeinsituction’ pnlenih o 57
EXacilion; Orderof« « 5 o« o sAsiede e o 46
EXOciiiBga-protram o o« s o e ity . 64
Exponent. . .© 2010 JoeraWeoerner .« imis 20
Exponentialfunetions .~ - « 5 s o no ow et 36, 39
Expressions

AmbigUaUS I S o TG T 48

parentheticalitl . oo b W s REe BUEE IS 31
EXIractingraots S =t o0 & bt L s 39
F
Factorialfufctions. = . . & & 5 & 5« o o et 35
Failureto clearreturn pointers 110
RIXKEYE: i i s s TSt v i R S 25
Eiredipaintdisplay - o o 5 v e nsselaned e 25
Flags Shaerigie . oo 5 = R ek R T 3,95
Elashing display. < . 5 o s o 5 21,28, 33, 38, 178, 181
Tt s 1T N SR R S 1 i T ¢ 69, 137, 158
Format, degree-minute-second. 43
GuncHens:affectol . . opooiisiode e 36
FENCHONSIREY oo von: n o o o cbrpet Wy v b e S o0 2
Functions:onevariable 35
Fanctonsstwovanaplas,. . . . o« . . oo e et 39
Functions=trgonometric.. . . = & . & o o e e 35

198

INDEX (continued)

G
GIOHRBY g e e A s 2 R 88
H
Halt instfusiiem; s ikl et bt el et o S 75
Hazard ofthie [==] keye el gl it aser e 27, 106
Head cleaningatardi Na s ol . o000t e
Hisrarehy: algabraie tr e Al o e T e N 46
HET ketg o 00 S et nlag il el 3 m s Sl e LA 75
Hours-minutes-seconds conversion 43
|
IFerr ey TRt IR B s e 89
TR ey e e A 8 e T e Tt i 89
[Epog REVEEREEL S aa b o Lusia S b T e S 89
[f2ro Rey oy st oo e a P e R PR 89
Improper arguiments. oo o 4L & laia e s 37
IND:Kaw: - & edesii o . e s R BT R 28 SASSLHINES
Indirect addressing: i s 5 onl b n e B R e 115
Initial display MOGesn 40 16 cirdt \Aldarmmp e o 5 b 24
Initialimiantigsa tarial, U0 S e S 25
INS key ./, JDatamatn Calculator, Museum. -, . . 82
Ja A maalo kgl T kol d o v (- ORI Al el el it | ¢ il 82
nstticlionitadastis = 0L o0 s St S]
Instructions, program
GRS S e e Vi e R e e 78
Yot LT HU e AR o L R Sl 82
I T T o A st o i i s <AL A A KD
FEGORBITIGEAr o P o ool o RO (O e i
Internal processing registers 31
intercupting aprogiam:: . . & 5 Gl casrain g 72
e e e S e, T S 26, 36
Ve rSe FURCHONE. vl s = v v e e e 26, 36
K
Koy gordeg sy fel i Bnalis S gd SN ERs e Rty i 5 g 78
Keyingipexponems ol ten . i o ol o ailalba ik 20
Keyvinginpumbers: o 0 G G el e s el il 18
Keysait) B SmEsaalim.) 0 0 i i e 27
L
- v it b e of OO TG LML NSl i (T A T

INDEX (continued)

Y e e e, S Rt ol b 72
FEArNMOCENT LT b e e e o e O 4
Levelsofparentheses 32
Fayeis ofiroutines i vt b Sle e S T 3,66
IS TKey AR e T SR el 133
IS e A DY O ra - el e T e b o e e LR 133
InikaVi e T e e 35
Loadmodule,program. & « o o 153, 163
O alalite R il S iy e e e 35
LOgaTI RIS s B i e e e e M e e 35
ERN kaviritianaa filserd 100 SRR e Rt s T 12
M

Magnetic card (See Card, magnetic)

WAINGERANCOT. o e R R et o 173
T A e e e ey e B 2l 20
Mantissaformals - = - i i o e ol 25
ManualproblemSolving '« . oo . o s . O 5
Memoraata e oS s e e 4,51
N O IOTY D OO AN - i o oty Vo [2 e bt s e st e 4,61
Mistakesicorrettiing: t: e i L = e s i bt et 78
Mode: displaytamath Calculator Museums . = =i 24
Modes, calculate,learn,run 4
Multiplicationi i e he o s L e e 29,30
Multiplicationtomemory. 55
N

Naturalllogarithms. v o 5 e o e o el v Paieis 35
NEgatiVeexponants:. i acuclic coulois oy o o) SiEieas 21
NBgative nuMbersi i s SsayERig GriloasL v 19
Nestedparentheses: SO0 L ES 46
NUlnstrUCHon e o e e ot e 78, 81
NONDer G f ot i b aestom e AL 18
NEeraltkaystt . e e L 7,18,79
o}

OEEION switch:= =0 oo 2o S8 RS RUROC S LS 5
Obarands ittt oo D o py RTREEIEI E 33
Cperations;pending-ai . i L S 33
Ordeyofopsraliohse e 0 o0 0w olh e e 48
VBT oW SN e i Ll e s 21,28, 181

200

INDEX (continued)

P
PAP:KeYHEIPm TUBYSIRY L oS b SRS IR DR 135
PATEIINEROSI et oty ol m o i =it B o iz SR 31
PandingoperationS s . . o o0 oirtioeiat o e oo 33
(REE G el o, SR e R s ', . 2 19
(a1 (2 1 s e S SN M e N S ol 0 1 109
Polar/rectangular conversions 44, 86
Powers, raising numbersto 39
T R Al (e e ek e iR R Tt 3, 132
B T e P R e e R T i PSR e o 44
BroCESSINGraISIaIS. i o i o b i e 2
21708 0 0 Bt e 200 Rt ot e A 55
Program card (See Card, magnetic)
Program,correctionstoi. . . . a0 0 o s s a 78
Brogram counter e ciel S ot sl 60, 66
Rrogramflagss oo Shne AT T e et e i e 95
BroarAm KeVInG N S e 12,76
Programimenmoryss . ot e e 4,12,76
PrOGEEN, ECORAING .« & v oo oot L s o S 77
Brogramstops: .t o s e e 12
oy e Y e B e o i L ey 65
Programming .2 ey LY JOGIG Qe e S 65
Programmingstylenath Calculator-Museum: - - - 71
BRTKey, -l i s s i 134
R

Radian/degreeconversion. 42
Radianimodess &a il] o Tan e s e 38
Raisingnumberstopowers 39
Rangeofidisplay: o ps s B sl i e 21
Range of function arguments. 38, 181
ade B G T e e T N o A 53
Readingamagneticeard. oo ., . 61
Recallingfrommemory « . ¢ ¢« v v o . 53
HeciprocalTuR Ction e S s S i o 35
Recording programonacard T
Rectangular (Cartesian) coordinates 44
Rectangular/polar conversions. 45
Hegisler antnmalic . o et e s e 55
Raqisters) addrassable. . ' i . i kil i 51
Replacement of display register value. 49, 57
RetumEpointer o5 0 e e e e . s 109
Return-pointerregisters 107

201

INDEX (continued)

RBootextractioniz s 2 b L se G el ol e 35,39
Bandingotdisplayr: & o 0 o0 Loah i B 19,25
o] o [y - R O T R T 97
TG T Hey s SR e 0w ™ 107
R e e e S S] 12,75
AR T (=] e e UG RS oS s T 4,10, 60
Hunningaprogram, . - Sess e alunnnlas sy 60
S
BERIEY N e S R e R e 101
G B O A O 20
Scientific notationremoval. 26
SEEARdIUNCHGRT & o 200 L AVt S A 7
SERVIEAL T rh s D s SR S 173
o b e B i ST el ot i 35
STRalesstap- -8 .« L L e S e T, 82
Sihglesstepaxecution ;.o ot e LN R T 82
SHIPRINO INSITHGHGRS = = SR 180
Spheticalicoordingtes. . . o 0, WIECEEE RIS 84
SEIArE TOORSS . B0 T L et s SRS IS 35
SOENNT e @010 1oerg Woatnar HHEUN LTS 35
CEGE Tt el 82
Sleps dlsplaylng 78
..................... 51
Storlng oty el N S s D i S L 51
Subrodtines s .o T st 101
Subroutine return-pointer00 . 109
Subtracting from MemMory - & . v v o ataltel: 55
SUDITACHON .0 e s o e At et e oy 29
SNV e e T T e iy i e RS W 55
SHMmMING to memony: . . & s aelsab 55
T
AL [T S s in At S o et gk 35
SFENEDOWEES: ol S UEy WGl T S ST fit R 20
HESISTENE VU AR o (RSN R S TN T T e, 89
Top-down problem B VTIOR3 TRl A v ARSI 66
RS U s an o L AUIIC AR sl bl it ot o e, 136
KERrSfaRINSHUCHONS L. 0, ., 00 R R S 67, 88
Trigonomelric TUNCHonS . . . o b ol e o W RE e 35
Iwo=variablefunctions ™. .=, L . Ll e 39

202

INDEX (continued)

V]

Unconditiongltranster.. « o« o 2 i sl w o o 67, 88
Underfiofani g i e Som g s g ot 21,28, 181
User=definableilabplgilit it Samriieina i 72
User-definedkeys:. & .l v & o o 0 L e 72
w

VWA ANEY: 2 e b G e s S e back cover
Writingaprogram. 12,65, 137, 1565
Writing onto magneticcard 77
Writing over display registercontents 49
X

el R St st e e e R R 35
Vi ke s e e R T i 35
EREY R e R L e 35
Z

ZorosdivisSion By S a5 ST R R e 28, 181
Zero instruction®ade] () Jogrg Vvoerners .. . AT

203

NOTES

Texas Instruments reserves the right to make changes in
materials and specifications without notice.

ONE-YEAR LIMITED WARRANTY

WARRANTEE
This Texas instruments electranic calculatos warmanty v‘:1anﬂs 1o e onginal uurcnasur ol
the caltutator

WARRANTY DURATION
This Texas instruments lactronic calculator fs warranted fo-the mrana! purchwr Tora
period of oie (1) year from the original purthase dale.

WARRANTY COVERAGE T

© This Texas instruments eledtronic calculatnr i wartanted against defuctive matefials ot 1 o
workmansmp, THIS WARRANTY 1S VDID IF: (1) THE CALCULATOR HAS BEEN DAMAGED.

BY ACCIDENT OR UNREASONABLE USE, NEGLECT, IMPROPER SERVICE OR OTHTﬁ! P

CAUSES NOT ARISING OUT OF DEFECTS IN MATERIAL DR WORKMANSHIP. {1} THE

SERIAL NUMBER HAS BEEN ALTERED OR DEFACED.

WARRANTY FERFORMANCE

Duiring the above ana 1Y year mmmty period your dalculator wiil aither ba ted or
tepdaned with a reg i modal ot an quakity (at Ti's ophion} when the
calculdton is returned. pustauumpm and insured. to & Texas Instrumants Service faci)
listed balow, In the event of replacement witha recanditiondd monel, the replacement un
will canting the warranty ot the anginal Caiculator-or 90 days whichever is longer- Other
than the posiage and insurance requirement. no chiarge will be mage for such repair.
adjustment. and/or replacement

WARRANTY DISCLAIMERS

ANY IMPLIED WARRANTIES ARISING OUT OF THIS SALE, INCLUDING BUT NOT LIMITED

T0 THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION TO THE ABOVE ONE (1 ‘I"EMI PERIOD. TEXAS :
INSTRUMENTS SHALL NOT BE LIABLE FOR LOSS OF USE OF LATOR OR

OTHERA INCIDENTAL OR CONSEQUENTIAL COSTS, EXPENSES, OH wm:s INCURA

- BY THE PURCHASER.

Some states do not allow the a:ﬂl mq er limitation of ol i warrnfies or lfal.
50 (heabove 4y may ot appl vw\ron ;
LEGAL REMEDIES -

Thif warr_nty gives you specific l=gal nghts and o may 1] na\m other nqma thal vary
frnm State o state.

TEXAS INSTRUMENTS CONSUMER SEHWCE'FHCIU'NE

Taxas Instruments Service Facillly Teras Imtmmuh Sorvice Facility
P.0. Bux 2500 = 4 Slulul
Lubhozk, Texas 79408 Richmand Hill, Ontario, culﬂa

Cansumers i Calilornia and Oregon may contact the folowing Texas insiruments olfives for
additiomal a5sstance of information:

feqas [nstrumants Consumer Serece g Taxas Instruments Consumer Service
1185 Arrway Drive Bidg J 10700 Southwest Beaverion Highway
Custattam, Califomia 82626 5 Park Plaza West. Sute 111
714y 5407190 Beaverion, Oregon 97005

(503 643-6758

CONSUMER RELATIONS DEPARTMENT
11 you have qrestions or need assistnce with your caleulator write the Consumer Refations
Qepartrient 2t Texas lastruments incorporated, P.0. Box 22283, Dalias, Texas 75222, Or, cal
Consumer Balations 2t BO0-527-4560 (toll-Iree within all :hnbgunus United States axcept Texas) or
600-492-4298 |tall {ree Within Taxas, f outsite contiguous. Unad States call 214: 218 545! We
16t that wa cannol accep! collect calls attlis nulfma 1 :

TExAas IN STRUM ENTS

INCORPORATED
DALLAS, TEXAS

PRINTEDINU S A, : 1220847—4E

	p0001
	p0002
	p0006
	p0007
	p0008
	p0009
	p001
	p002
	p003
	p004
	p005
	p006
	p007
	p008
	p009
	p010
	p011
	p012
	p013
	p014
	p015
	p016
	p017
	p018
	p019
	p020
	p021
	p022
	p023
	p024
	p025
	p026
	p027
	p028
	p029
	p030
	p031
	p032
	p033
	p034
	p035
	p036
	p037
	p038
	p039
	p040
	p041
	p042
	p043
	p044
	p045
	p046
	p047
	p048
	p049
	p050
	p051
	p052
	p053
	p054
	p055
	p056
	p057
	p058
	p059
	p060
	p061
	p062
	p063
	p064
	p065
	p066
	p067
	p068
	p069
	p070
	p071
	p072
	p073
	p074
	p075
	p076
	p077
	p078
	p079
	p080
	p081
	p082
	p083
	p084
	p085
	p086
	p087
	p088
	p089
	p090
	p091
	p092
	p093
	p094
	p095
	p096
	p097
	p098
	p099
	p100
	p101
	p102
	p103
	p104
	p105
	p106
	p107
	p108
	p109
	p110
	p111
	p112
	p113
	p114
	p115
	p116
	p117
	p118
	p119
	p120
	p121
	p122
	p123
	p124
	p125
	p126
	p127
	p128
	p129
	p130
	p131
	p132
	p133
	p134
	p135
	p136
	p137
	p138
	p139
	p140
	p141
	p142
	p143
	p144
	p145
	p146
	p147
	p148
	p149
	p150
	p151
	p152
	p153
	p154
	p155
	p156
	p157
	p158
	p159
	p160
	p161
	p162
	p163
	p164
	p165
	p166
	p167
	p168
	p169
	p170
	p171
	p172
	p173
	p174
	p175
	p176
	p177
	p178
	p179
	p180
	p181
	p182
	p183
	p184
	p185
	p186
	p187
	p188
	p189
	p190
	p191
	p192
	p193
	p194
	p195
	p196
	p197
	p198
	p199
	p200
	p201
	p202
	p203
	p249
	p250
	p251

