The Slide Rule Calculating by Mind and Hand

Joe Pasquale

Department of Computer Science and Engineering University of California, San Diego

What is a Slide Rule?


```
A|,
```



```
L0
```

- Analog calculator - by mind and hand
- Scales on body and slide, with cursor
- $x \times y, x \div y, 1 / x, x^{2}, \sqrt{ } x, x^{3}, \sqrt[3]{x}, x^{y}, x^{1 / y}, \ldots$
- $10^{x}, \log x, \mathrm{e}^{\mathrm{x}}, \ln \mathrm{x}, \sin / \tan , \sinh / \tanh , \ldots$

Joe Pasquale, UCSD

- 1614 Napier
- 1617 Briggs
- 1620 Gunter
- 1630 Oughtred
- 1850 Mannheim
- 1891 Cox
- 1972 HP

Joe Pasquale, UCSD

History

logarithms
common logarithms
logarithmic scale
slide rule
standardized scales
duplex slide rule
electronic calculator

Multiplication: 2×3

- 1/C above 2/D
- Cursor above 3/C
- Read 6/D

Multiplication: 2.15×3.35

- 1/C above 2.15/D
- Cursor above 3.35/C
- Read 7.20/D (why 7.20 and not 7.2?)

Joe Pasquale, UCSD

Multiplication: 76×0.32

- 1/C above 7.6/D - use right index of C
- Cursor above 3.2/C, read 2.4/D
- Correct for decimal point: 24

Significant Digits

- $76 \times .32 \approx 24.32$ [23.7825-24.8625]
$-75.5 \times .315=23.7825$
$-76.5 \times .325=24.8625$
- $76 \times .32 \approx 24$ [23.5-24.5] 2 SD
- $76 \times .32 \approx 24.3 \quad[24.25-24.35] 3 S D$

Joe Pasquale, UCSD

Division: $5 \div 2$

- 2/C above 5/D
 - Read 2.5/D under 1/C

Division: $60 \div 0.24$

- 2.4/C above 6/D
- Read 2.5/D under 1/C
- Correct decimal point: 250

Joe Pasquale, UCSD

Algebra of Lengths

- Length $(A+B)=$ Length $(A)+$ Length (B)

$A+B$
- Length($\mathrm{A}-\mathrm{B}$) $=$ Length (A) - Length(B$)$

Joe Pasquale, UCSD

Calculating Power

- Any operation expressible in the form

$$
A+B=C \text { or } A-B=C
$$

can be implemented with a slide rule

- $x \times y=z \rightarrow \log x+\log y=\log z$
- $x \div y=z \rightarrow \log x-\log y=\log z$
- $x^{y}=z \quad \rightarrow \log \log x+\log y=\log \log z$

Addition: Adding Lengths

- Example: 1 + 2 = 3
- $L(1)+L(2)=L(1+2)=L(3)$

Joe Pasquale, UCSD

Re-Label Scale Indices

- $x=\log _{b} b^{x}$, for any x, for any b
- $0=\log _{b} b^{0}, 1=\log _{b} b^{1}, 2=\log _{b} b^{2}, \ldots$

Multiplication: Length \equiv Log

- $\log _{b} b^{1}+\log _{b} b^{2}=\log _{b} b^{3}$
- $b^{1} \times b^{2}=b^{3}$

Re-label Scale Indices

Add Intermediate Labels

- " x " is located at $\log x / \log 2$
- " 3 " is located at $\log 3 / \log 2 \approx 1.585$

To Multiply, Add Exponents

- $2^{1} \times 2^{2}=2^{1+2}=2^{3}$
- $2 \times 4=8$

Joe Pasquale, UCSD

Multiplication and Division

- $2 \times 2=4,2 \times 3=6,2 \times 4=8,2 \times 5=10$
- $4 \div 2=2,6 \div 3=2,8 \div 4=2,10 \div 5=2$

Multipliers Shift Scales

- Multiplication by π, shift scale to left
- $2 \times \pi \approx 6.28$

Reciprocals Invert Scales

- Reciprocal: scale inverted horizontally
- $1 / 2=.5,1 / 3 \approx .33,1 / 4=.25,1 / 5=.2$

Powers Compress Scales

- Square: compress scale by factor of 2
- $2^{2}=4,3^{2}=9,5^{2}=25,8^{2}=64$

Roots Expand Scales

- Square root: expand scale by factor of 2
- $\sqrt{ } 2 \approx 1.41, \sqrt{ } 4=2, \sqrt{ } 9=3$

Looking at a Real Slide Rule

- C, D reference scales
- Cl reciprocal of C inversion
- A, B square of C, D - 2x compression
- K cube of C, D - 3x compression

Precision

- Depends on physical length
- 10 inch rule: 3-4 digits
- Ways to increase precision
- Increase physical length
- Wrap scale around rule to increase length
- Magnify the area of focus

Precision — Relative Error

- Compare physical distances at extremes
- Distance (1.00, 1.01) \approx Distance $(9.9,10)$

$$
-(1.01-1.00) / 1.00=1 \%,(10-9.9) / 10=1 \%
$$

- Relative error uniform across log scale

Precision vs. Accuracy

- $2 \times 3=6$
- accurate, not precise
- $2.00 \times 3.00=6.01$
- more precise, less accurate
- Are 2 and 2.00 located at same place?
- Does it matter? Why?

Trigonometry

- Recall $\sin \theta=b / c, \cos \theta=a / c, \tan \theta=b / a$
- Scales for $\sin \theta$ and $\tan \theta$
- To calculate $\cos \theta$, use $\sin 90-\theta$

Sin and Tan Scale Ranges

- Sin scale: $5.74-90.0$ degrees
$-\sin 5.74 \approx 0.1, \cos 84.26 \approx 0.1$
$-\sin 90=1.0, \cos 0=1.0$
- Tan scale: 5.71-45-84.3 degrees

$$
-\tan 5.71 \approx 0.1
$$

$-\tan 45=1.0$
$-\tan 84.3 \approx 10$

$\sin \theta \approx \tan \theta$, for small θ

- $\sin \theta=b / c, \tan \theta=b / a$
- For small θ
$-\mathrm{a} \approx \mathrm{c}$, therefore $\sin \theta \approx \tan \theta$
- Use ST scale for $\theta<5.74$

Calculating Arbitrary Powers x^{y}

- x^{y} can be calculated as $A+B=C$

$$
\begin{aligned}
& x^{y} \rightarrow \log x^{y}=y \log x \\
& \rightarrow \log \log x^{y}=\log y+\log \log x \\
& \rightarrow \log \log x+\underbrace{\log y}_{A-}=\log \log x^{y} \\
& C_{-}^{-}
\end{aligned}
$$

- Note that A and C are same scales: LL
- LL scales devised by Roget in 1815

In $1+x \approx x$ for small x

- Near $x=1, \ln 1+x \approx x$ (linear)
- $\log 1=0$

How Were Scales Built?

- The Gilligan's Island Slide Rule Problem
- You are stranded on an island
- You, "the professor," must save the crew
- You decide to build a slide rule
- How do you determine graduations for ...
- a log scale, log log scale, sin scale, tan scale
- Arithmetic + geometry, no calculators

Slide Rule Topology

- Slide rules come in many
- physical shapes and sizes
- scale configurations, lengths, layout
- Precision
- Size
- Convenience

Linear

Circular

Joe Pasquale, UCSD

Spiral

Joe Pasquale, UCSD

Cylindrical Spiral

Cylindrical Grid

Complex Arithmetic

Dimensional Analysis

UCSD Freshman Seminar

Joe Pasquale, UCSD

What Students Learn

- How to use all scales
- Estimation
- Approximation
- Precision, accuracy
- Advanced topics
- Scales from scratch
- Benford's Law

Larger Lessons

- Economy of calculating
- slide rules
- calculators
- computers
- Social value
- parents, grandparents
- do so much with so little

Quotes

My skills of estimation are getting better ... I like being engrossed in the calculations, instead of just punching them into my calculator. I make less mistakes, and find I know what I am talking about ...

- Brian Robbins, W03

Quotes

I was looking at the A scale and I liked how it finds squares by just decreasing the size of the D scale by half ... So then I found the cubed K scale, and of course, it is three times smaller than the D scale.

- Tracy Becker, W03

Quotes

I like being able to see mathematical operations in the visual way that a slide rule allows ... This seminar has given me a better understanding of precision, relationship between logs and multiplication, and Benford's Law.

- Amy Cunningham, W03

Quotes

What amazes me the most about the slide rule is that it works ... I can't help but marvel at its design and that someone actually was able to create such a device ... Its complexity is just mind boggling.

- Kendra Kadas, F03

Quotes

I was in physics class, and the professor explained how tan and sin are close for really small angles. The class didn't show much reaction, but my first thought was "hey, I learned that from my slide rule seminar."

- John Beckfield, F03

Quotes

The first couple of days with this slide rule have really been a learning experience for me ... It took me some time to realize that you could multiply by any interval of 10 using the same number spectrum.

> - Rajiv Rao, F04

Quotes

This slide rule seminar is the only thing saving me from a quarter full of literature writing, and other humanitarian monotony. After hours of "theory of literature," I realized I still had slide rule homework. Hurray!

- Lydia McNabb, F04

Quotes

The slide rule rules. The slide rule is truly an extension of a person, not something completely separate such as the calculator. I actually had to think before, during, and after getting the answer on the slide rule.

- Lynn Greiner, F04

Quotes

I'm actually quite amazed with the design of the slide rule. I find the folded scales especially ingenious ... I definitely feel I understand what I'm doing - not quite the "black box" that calculators are.

- Ryan Lue, F04

Quotes

The more I use the slide rule, the greater the insight I have into how ingeniously the scales were put together. I hope I can re-teach my parents how to use it.

- Chris Brumbaugh, F04

Proof of Slide Rule Use in ‘76

Student shows teacher a slide rule calculation.
Weehawken High School, NJ, 1976

Are We Making Progress?

Somewhere, something went terribly wrong

FOR MORE INFO

Joe Pasquale
Dept. of Computer Science \& Engineering
University of California, San Diego
9500 Gilman Drive
La Jolla, CA 92093-0404
pasquale@cs.ucsd.edu
http://www-cse.ucsd.edu/~pasquale

Supplemental

Optimal Length of Log Scale

- What integer total length L minimizes RMS error of integer tick mark values?
- Determine for each tick mark X
- round (L * $\log (X)$)
- Compute Error
- | true value - nearest integer value |
- RMS: Root Mean Square (of errors)

Survey of Best Values < 1000

Length	Error	Length	Error
63	10.86	505	9.52
176	9.99	568	2.19
239	7.89	744	10.22
329	5.90	807	9.93
392	10.24	897	4.16

Length of 568, 2.2\% error

Location of major tick marks

1:	0	0.00	$6: 442$	441.99
2: 171	170.99	$7: 480$	480.02	
3: 271	271.01	$8: 513$	512.96	
4: 342	341.97	9: 542	542.01	
5: 397	397.02	1: 568	568.00	

Length of 329, 5.9\% error

Location of major tick marks

1:	0	0.00	$6: 256$	256.01
2:	99	99.04	$7: 278$	278.04
3: 157	156.97	$8: 297$	297.12	
4: 198	198.08	$9: 314$	313.95	
5: 230	229.96	$1: 329$	329.00	

Length of 392, 10.2\% error

Location of major tick marks

1:	0	0.00	6: 305	305.04
2:	118	118.00	7: 331	331.28
3:	187	187.03	8: 354	354.01
4:	236	236.01	9: 374	374.06
5: 274	274.00	$1: 392$	392.00	

