The Slide Rule Calculating by Mind and Hand

Joe Pasquale

Department of Computer Science and Engineering University of California, San Diego

November 18, 2005

Oughtred Society Meeting, MIT

What is a Slide Rule?

- Analog calculator by mind and hand
- Scales on body and slide, with cursor
- $x \times y$, $x \div y$, 1/x, x^2 , $\sqrt{-x}$, x^3 , $\sqrt[3]{x}$, x^y , $x^{1/y}$, ...
- 10^x, log x, e^x, ln x, sin/tan, sinh/tanh, ... Joe Pasquale, UCSD

History

- 1614 Napier
- 1617 Briggs
- 1620 Gunter
- 1630 Oughtred
- 1850 Mannheim
- 1891 Cox
- 1972 HP

logarithms common logarithms logarithmic scale slide rule standardized scales duplex slide rule electronic calculator

Multiplication: 2 × 3

- 1/C above 2/D
- Cursor above 3/C
- Read 6/D

Multiplication: 2.15 × 3.35

- 1/C above 2.15/D
- Cursor above 3.35/C
- Read 7.20/D (why 7.20 and not 7.2?)

Multiplication: 76 × 0.32

- 1/C above 7.6/D use right index of C
- Cursor above 3.2/C, read 2.4/D
- Correct for decimal point: 24

Significant Digits

- 76 × .32 ≈ 24.32 [23.7825 24.8625]
 -75.5 × .315 = 23.7825
 -76.5 × .325 = 24.8625
- 76 × .32 ≈ 24 [23.5 24.5] 2 SD
- 76 × .32 ≈ 24.3 [24.25 24.35] 3 SD

Joe Pasquale, UCSD

Division: 5 ÷ 2

- 2/C above 5/D
- Read 2.5/D under 1/C

Division: 60 ÷ 0.24

- 2.4/C above 6/D
- Read 2.5/D under 1/C
- Correct decimal point: 250

Algebra of Lengths

Length(A + B) = Length(A) + Length(B)

Length(A - B) = Length(A) - Length(B)

Calculating Power

Any operation expressible in the form
 A + B = C or A - B = C

can be implemented with a slide rule

- $x \times y = z \rightarrow \log x + \log y = \log z$
- $x \div y = z \rightarrow \log x \log y = \log z$
- $x^y = z \longrightarrow \log \log x + \log y = \log \log z$

- Example: 1 + 2 = 3
- L(1) + L(2) = L(1+2) = L(3)

Re-Label Scale Indices

- $x = \log_b b^x$, for any x, for any b
- $0 = \log_b b^0$, $1 = \log_b b^1$, $2 = \log_b b^2$, ...

- $\log_b b^1 + \log_b b^2 = \log_b b^3$
- $b^1 \times b^2 = b^3$

Add Intermediate Labels

- "x" is located at log x / log 2
- "3" is located at log 3 / log 2 ≈ 1.585

Joe Pasquale, UCSD

Multiplication and Division

- $2 \times 2 = 4, 2 \times 3 = 6, 2 \times 4 = 8, 2 \times 5 = 10$
- $4 \div 2 = 2, 6 \div 3 = 2, 8 \div 4 = 2, 10 \div 5 = 2$

Multipliers Shift Scales

- Multiplication by π , shift scale to left
- 2 × π ≈ 6.28

Reciprocals Invert Scales

- Reciprocal: scale inverted horizontally
- 1/2 = .5, 1/3 ≈ .33, 1/4 = .25, 1/5 = .2

Powers Compress Scales

- Square: compress scale by factor of 2
- $2^2 = 4$, $3^2 = 9$, $5^2 = 25$, $8^2 = 64$

Joe Pasquale, UCSD

Roots Expand Scales

- Square root: expand scale by factor of 2
- $\sqrt{2} \approx 1.41$, $\sqrt{4} = 2$, $\sqrt{9} = 3$

Looking at a Real Slide Rule

- C, D reference scales
- Cl reciprocal of C inversion
- A, B square of C, D 2x compression
- K cube of C, D 3x compression

Precision

- Depends on physical length
- 10 inch rule: 3-4 digits
- Ways to increase precision
 - Increase physical length
 - Wrap scale around rule to increase length
 - Magnify the area of focus

Precision — Relative Error

- Compare physical distances at extremes
 - Distance (1.00, 1.01) ≈ Distance (9.9, 10)
 - -(1.01-1.00)/1.00 = 1%, (10-9.9)/10 = 1%
- Relative error uniform across log scale

Precision vs. Accuracy

• 2 × 3 = 6

- accurate, not precise

• $2.00 \times 3.00 = 6.01$

- more precise, less accurate

Are 2 and 2.00 located at same place?
– Does it matter? Why?

Trigonometry

- Recall $\sin \theta = b/c$, $\cos \theta = a/c$, $\tan \theta = b/a$
- Scales for sin θ and tan θ
- To calculate $\cos \theta$, use $\sin 90-\theta$

Sin and Tan Scale Ranges

- Sin scale: 5.74 90.0 degrees
 - sin 5.74 ≈ 0.1, cos 84.26 ≈ 0.1
 - $-\sin 90 = 1.0, \cos 0 = 1.0$
- Tan scale: 5.71 45 84.3 degrees
 - tan 5.71 ≈ 0.1
 - $-\tan 45 = 1.0$
 - tan 84.3 ≈ 10

sin θ ≈ tan θ , for small θ

- $\sin \theta = b/c$, $\tan \theta = b/a$
- For small θ
 - $-a \approx c$, therefore sin $\theta \approx tan \theta$
 - Use ST scale for θ < 5.74

Calculating Arbitrary Powers x^y

• x^y can be calculated as A + B = C

$$x^y \rightarrow \log x^y = y \log x$$

- \rightarrow log log x^y = log y + log log x
- $\rightarrow \log \log x + \log y = \log \log x^{y}$
- Note that A and C are same scales: LL
- LL scales devised by Roget in 1815

In $1+x \approx x$ for small x

- Near x = 1, In $1+x \approx x$ (linear)
- log 1 = 0

How Were Scales Built?

- The Gilligan's Island Slide Rule Problem
 - You are stranded on an island
 - You, "the professor," must save the crew
 - You decide to build a slide rule
- How do you determine graduations for ...
 a log scale, log log scale, sin scale, tan scale
- Arithmetic + geometry, no calculators

Slide Rule Topology

- Slide rules come in many
 - physical shapes and sizes
 - scale configurations, lengths, layout
- Precision
- Size
- Convenience

Linear

Joe Pasquale, UCSD

Circular

Joe Pasquale, UCSD

Spiral

Cylindrical Spiral

Joe Pasquale, UCSD

Cylindrical Grid

Joe Pasquale, UCSD

Complex Arithmetic

Dimensional Analysis

UCSD Freshman Seminar

Joe Pasquale, UCSD

What Students Learn

- How to use all scales
- Estimation
- Approximation
- Precision, accuracy
- Advanced topics
 - Scales from scratch
 - Benford's Law

Larger Lessons

Economy of calculating

- slide rules
- calculators
- computers
- Social value
 - parents, grandparents
 - do so much with so little

My skills of estimation are getting better ... I like being engrossed in the calculations, instead of just punching them into my calculator. I make less mistakes, and find I know what I am talking about ...

- Brian Robbins, W03

I was looking at the A scale and I liked how it finds squares by just decreasing the size of the D scale by half ... So then I found the cubed K scale, and of course, it is three times smaller than the D scale.

- Tracy Becker, W03

I like being able to see mathematical operations in the visual way that a slide rule allows ... This seminar has given me a better understanding of precision, relationship between logs and multiplication, and Benford's Law. - Amy Cunningham, W03

What amazes me the most about the slide rule is that it works ... I can't help but marvel at its design and that someone actually was able to create such a device ... Its complexity is just mind boggling. - Kendra Kadas, F03

I was in physics class, and the professor explained how tan and sin are close for really small angles. The class didn't show much reaction, but my first thought was "hey, I learned that from my slide rule seminar."

- John Beckfield, F03

The first couple of days with this slide rule have really been a learning experience for me ... It took me some time to realize that you could multiply by any interval of 10 using the same number spectrum.

- Rajiv Rao, F04

This slide rule seminar is the only thing saving me from a quarter full of literature writing, and other humanitarian monotony. After hours of "theory of literature," I realized I still had slide rule homework. Hurray! - Lydia McNabb, F04

The slide rule rules. The slide rule is truly an extension of a person, not something completely separate such as the calculator. I actually had to think before, during, and after getting the answer on the slide rule. - Lynn Greiner, F04

I'm actually quite amazed with the design of the slide rule. I find the folded scales especially ingenious ... I definitely feel I understand what I'm doing - not quite the "black box" that calculators are.

- Ryan Lue, F04

The more I use the slide rule, the greater the insight I have into how ingeniously the scales were put together. I hope I can re-teach my parents how to use it.

- Chris Brumbaugh, F04

Proof of Slide Rule Use in '76

Student shows teacher a slide rule calculation. Weehawken High School, NJ, 1976

Joe Pasquale, UCSD

Are We Making Progress?

Somewhere, something went terribly wrong

FOR MORE INFO

Joe Pasquale Dept. of Computer Science & Engineering University of California, San Diego 9500 Gilman Drive La Jolla, CA 92093-0404

pasquale@cs.ucsd.edu http://www-cse.ucsd.edu/~pasquale

Supplemental

Optimal Length of Log Scale

- What integer total length L minimizes RMS error of integer tick mark values?
- Determine for each tick mark X

 round (L * log(X))
- Compute Error
 - | true value nearest integer value |
- RMS: Root Mean Square (of errors)

Survey of Best Values < 1000

Length	Error	Length	Error
63	10.86	505	9.52
176	9.99	568	2.19
239	7.89	744	10.22
329	5.90	807	9.93
392	10.24	897	4.16

Length of 568, 2.2% error

Location of major tick marks

1:00.006:442441.992:171170.997:480480.023:271271.018:513512.964:342341.979:542542.015:397397.021:568568.00

Length of 329, 5.9% error

Location of major tick marks

1:	0	0.00	6:	256	256.01
2:	99	99.04	7:	278	278.04
3:	157	156.97	8:	297	297.12
4:	198	198.08	9:	314	313.95
5:	230	229.96	1:	329	329.00

Length of 392, 10.2% error

Location of major tick marks

1:	0	0.00	6:	305	305.04
2:	118	118.00	7:	331	331.28
3:	187	187.03	8:	354	354.01
4:	236	236.01	9:	374	374.06
5:	274	274.00	1:	392	392.00